We prove that if (un)n≥0 is a Lucas sequence satisfying some mild hypotheses, then the number of positive integers n does not exceed x and such that n divides un is less than x1−(1/2+o(1)) log log log x/log log x, as x → ∞. This generalizes a result of Luca and Tron about the positive integers n dividing the nth Fibonacci number, and improve a previous upper bound due to Alba Gonz´alez, Luca, Pomerance and Shparlinski
On numbers n dividing the nth term of a Lucas sequence / Sanna, Carlo. - In: INTERNATIONAL JOURNAL OF NUMBER THEORY. - ISSN 1793-0421. - STAMPA. - 13:3(2017), pp. 725-734. [10.1142/S1793042117500373]
On numbers n dividing the nth term of a Lucas sequence
Sanna, Carlo
2017
Abstract
We prove that if (un)n≥0 is a Lucas sequence satisfying some mild hypotheses, then the number of positive integers n does not exceed x and such that n divides un is less than x1−(1/2+o(1)) log log log x/log log x, as x → ∞. This generalizes a result of Luca and Tron about the positive integers n dividing the nth Fibonacci number, and improve a previous upper bound due to Alba Gonz´alez, Luca, Pomerance and ShparlinskiFile | Dimensione | Formato | |
---|---|---|---|
temp.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
272.09 kB
Formato
Adobe PDF
|
272.09 kB | Adobe PDF | Visualizza/Apri |
On numbers n dividing the nth term of a Lucas sequence.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
188.16 kB
Formato
Adobe PDF
|
188.16 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2722653