We prove that if (un)n≥0 is a Lucas sequence satisfying some mild hypotheses, then the number of positive integers n does not exceed x and such that n divides un is less than x1−(1/2+o(1)) log log log x/log log x, as x → ∞. This generalizes a result of Luca and Tron about the positive integers n dividing the nth Fibonacci number, and improve a previous upper bound due to Alba Gonz´alez, Luca, Pomerance and Shparlinski

On numbers n dividing the nth term of a Lucas sequence / Sanna, Carlo. - In: INTERNATIONAL JOURNAL OF NUMBER THEORY. - ISSN 1793-0421. - STAMPA. - 13:3(2017), pp. 725-734. [10.1142/S1793042117500373]

On numbers n dividing the nth term of a Lucas sequence

Sanna, Carlo
2017

Abstract

We prove that if (un)n≥0 is a Lucas sequence satisfying some mild hypotheses, then the number of positive integers n does not exceed x and such that n divides un is less than x1−(1/2+o(1)) log log log x/log log x, as x → ∞. This generalizes a result of Luca and Tron about the positive integers n dividing the nth Fibonacci number, and improve a previous upper bound due to Alba Gonz´alez, Luca, Pomerance and Shparlinski
File in questo prodotto:
File Dimensione Formato  
temp.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 272.09 kB
Formato Adobe PDF
272.09 kB Adobe PDF Visualizza/Apri
On numbers n dividing the nth term of a Lucas sequence.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 188.16 kB
Formato Adobe PDF
188.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2722653