Let A be the set of all integers of the form gcd(n,Fn), where n is a positive integer and Fn denotes the nth Fibonacci number. We prove that #(A∩[1,x])≫x/logx for all x≥2 and that A has zero asymptotic density. Our proofs rely upon a recent result of Cubre and Rouse which gives, for each positive integer n, an explicit formula for the density of primes p such that n divides the rank of appearance of p, that is, the smallest positive integer k such that p divides Fk.
On the greatest common divisor of n and the nth Fibonacci number / Leonetti, Paolo; Sanna, Carlo. - In: ROCKY MOUNTAIN JOURNAL OF MATHEMATICS. - ISSN 0035-7596. - STAMPA. - 48:4(2018), pp. 1191-1199. [10.1216/RMJ-2018-48-4-1191]
On the greatest common divisor of n and the nth Fibonacci number
Sanna, Carlo
2018
Abstract
Let A be the set of all integers of the form gcd(n,Fn), where n is a positive integer and Fn denotes the nth Fibonacci number. We prove that #(A∩[1,x])≫x/logx for all x≥2 and that A has zero asymptotic density. Our proofs rely upon a recent result of Cubre and Rouse which gives, for each positive integer n, an explicit formula for the density of primes p such that n divides the rank of appearance of p, that is, the smallest positive integer k such that p divides Fk.File | Dimensione | Formato | |
---|---|---|---|
gcdnfibn_2017_04_01.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
274.22 kB
Formato
Adobe PDF
|
274.22 kB | Adobe PDF | Visualizza/Apri |
On the greatest common divisor.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
3.03 MB
Formato
Adobe PDF
|
3.03 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2722598