Let A be the set of all integers of the form gcd(n,Fn), where n is a positive integer and Fn denotes the nth Fibonacci number. We prove that #(A∩[1,x])≫x/logx for all x≥2 and that A has zero asymptotic density. Our proofs rely upon a recent result of Cubre and Rouse which gives, for each positive integer n, an explicit formula for the density of primes p such that n divides the rank of appearance of p, that is, the smallest positive integer k such that p divides Fk.

On the greatest common divisor of n and the nth Fibonacci number / Leonetti, Paolo; Sanna, Carlo. - In: ROCKY MOUNTAIN JOURNAL OF MATHEMATICS. - ISSN 0035-7596. - STAMPA. - 48:4(2018), pp. 1191-1199. [10.1216/RMJ-2018-48-4-1191]

On the greatest common divisor of n and the nth Fibonacci number

Sanna, Carlo
2018

Abstract

Let A be the set of all integers of the form gcd(n,Fn), where n is a positive integer and Fn denotes the nth Fibonacci number. We prove that #(A∩[1,x])≫x/logx for all x≥2 and that A has zero asymptotic density. Our proofs rely upon a recent result of Cubre and Rouse which gives, for each positive integer n, an explicit formula for the density of primes p such that n divides the rank of appearance of p, that is, the smallest positive integer k such that p divides Fk.
File in questo prodotto:
File Dimensione Formato  
gcdnfibn_2017_04_01.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 274.22 kB
Formato Adobe PDF
274.22 kB Adobe PDF Visualizza/Apri
On the greatest common divisor.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 3.03 MB
Formato Adobe PDF
3.03 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2722598