Let ∈ℤ[] be a quadratic or cubic polynomial. We prove that there exists an integer ⩾2 such that for every integer ⩾ one can find infinitely many integers ⩾0 with the property that none of (+1),(+2),⋯,(+) is coprime to all the others. This extends previous results on linear polynomials and, in particular, on consecutive integers.
A coprimality condition on consecutive values of polynomials / Sanna, Carlo; Szikszai, Márton. - In: BULLETIN OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6093. - 49:5(2017), pp. 908-915. [10.1112/blms.12078]
A coprimality condition on consecutive values of polynomials
Sanna, Carlo;
2017
Abstract
Let ∈ℤ[] be a quadratic or cubic polynomial. We prove that there exists an integer ⩾2 such that for every integer ⩾ one can find infinitely many integers ⩾0 with the property that none of (+1),(+2),⋯,(+) is coprime to all the others. This extends previous results on linear polynomials and, in particular, on consecutive integers.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
SannaSzikszai_PolynomialPillai_Submission.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
283.27 kB
Formato
Adobe PDF
|
283.27 kB | Adobe PDF | Visualizza/Apri |
A coprimality condition on consecutive values of polynomials.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
3.68 MB
Formato
Adobe PDF
|
3.68 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11583/2722594