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A COPRIMALITY CONDITION ON CONSECUTIVE VALUES OF

POLYNOMIALS

CARLO SANNA AND MÁRTON SZIKSZAI

Abstract. Let f ∈ Z[X] be quadratic or cubic polynomial. We prove that there exists an

integer Gf ≥ 2 such that for every integer k ≥ Gf one can find infinitely many integers n ≥ 0

with the property that none of f(n+ 1), f(n+ 2), . . . , f(n+k) is coprime to all the others. This

extends previous results on linear polynomials and, in particular, on consecutive integers.

1. Introduction

Let s = (s(n))∞n≥1 be an arbitrary sequence of integers and define gs ≥ 2 to be the smallest integer

such that one can find gs consecutive terms of s with the property that none of them is coprime

to all the others. Similarly, let Gs ≥ 2 denote the smallest integer such that for every k ≥ Gs one

can find k consecutive terms satisfying the above requirements. The quantities gs and Gs may

or may not exist. For instance, the sequence of positive even integers has gs = Gs = 2, while for

the sequence of prime numbers neither exists. Note that the existence of Gs implies that of gs
and one has gs ≤ Gs. For less trivial examples see the paper of Hajdu and Szikszai [10].

Erdős [5] was the first to prove the existence of Gs when s is the sequence of natural numbers.

Later, the combined efforts of Pillai [14] and Brauer [3] gave a more explicit result, namely that

gs = Gs = 17. We note that interest in such a problem is twofold. On one hand, Pillai aimed at

the solution of the classical Diophantine problem whether the product of consecutive integers

can be a perfect power. While a complete answer was given by Erdős and Selfridge [6], Pillai [15]

himself proved, using his already mentioned result from [14], that it cannot be if one take at

most 16 consecutive terms. On the other hand, Brauer [3] made connection with his earlier

paper [4] on an old problem, studied already by Legendre [12], concerning prime gaps. In fact,

Erdős [5] himself also studied prime distance of consecutive primes. Here we would not like to

go into further details on any of these relations.

Gradually, the study of gs and Gs in various sequences, and their importance in analogous

problems as the ones mentioned earlier, attracted an increased attention. Evans [7] considered

the case when s is an arithmetic progression and proved the existence of Gs. Ohtomo and

Tamari [13] derived the same, but also dealt with numerical aspects by showing that Gs ≤ 384

for the sequence of odd integers. The most recent progress is due to Hajdu and Saradha [9]

who gave an effective upper bound on Gs depending only on the difference of the progression

together with a heuristic algorithm to find the exact value of it, whenever the number of prime

factors of the difference is “small”.
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2 CARLO SANNA AND MÁRTON SZIKSZAI

Observe that both the natural numbers and arithmetic progressions can be considered as con-

secutive values of linear polynomials. Recently, Harrington and Jones [11] studied quadratic

sequences, that is, for some quadratic f ∈ Z[X] one has s(n) = f(n) for every n ≥ 1. They

computed the exact value of gs when f is monic or when it belongs to some special families

of nonmonic polynomials. Further, they conjectured that gs exists and that gs ≤ 35 for every

quadratic polynomial. However, they did not consider Gs to any extent.

In this paper, we considerably extend the previous results. Before stating our result we note that

throughout the paper we use the notation gf = gs and Gf = Gs and write about consecutive

values of the polynomial f instead of consecutive terms of the corresponding sequence s. The

main theorem is as follows.

Theorem 1.1. If f ∈ Z[X] is quadratic or cubic, then Gf exists. Further, for every k ≥ Gf

one can find infinitely many integer n ≥ 0 such that f(n + 1), f(n + 2), . . . , f(n + k) has the

property that none of them is coprime to all the others.

Observe that Theorem 1.1 allows us to immediately settle one part of the conjecture made by

Harrington and Jones [11] on gf .

Corollary 1.1. If f ∈ Z[X] is quadratic, then gf exists.

Here we do not consider the absolute boundedness of gf , but make some remarks on it instead.

For every positive integer k ≥ 2, there exists a quadratic polynomial f ∈ Z[X] reducible in Z[X]

such that k ≤ gf ≤ Gf . This follows easily by taking d to be the product of the first k primes

and then looking at the polynomial f(X) = (1 + dX)2. On one hand we have gf = g1+dX

and Gf = G1+dX , while on the other we have k ≤ g1+dX ≤ G1+dX . Neverthless, we could

not say anything about the irreducible case and we feel that, despite not stating it anywhere

and not excluding reducibles before, Harrington and Jones made their conjecture on this more

interesting setting.

Let us finish this section by discussing the main tools we use in the proof of Theorem 1.1. The

basic idea is to construct for every quadratic or cubic polynomial f an auxiliary polynomial

f̃ that, in some sense, controls the existence of “close” solutions to polynomial congruences

f(X) ≡ 0 (mod p). Then we show that if k is desirably large, one has enough primes with such

close solutions to “cover” some block of k consecutive numbers f(n+ 1), f(n+ 2), . . . , f(n+ k).

The success of this construction relies on the Stickelberger parity theorem, results on the p-adic

valuations of products of consecutive polynomial values, and lower bounds on the number of

certain subsets of primes.

Note that our methods can yield, at least in principle, an effective upper bound on Gf . However,

the bound would be too large to be useful in practice. Further, we emphasize that Theorem 1.1

implies the existence of Gf for every quartic polynomial f ∈ Z[x] that is reducible in Z[X] (we

always have a factor of degree at most 3), but our construction already fails to deal with quartic

polynomials in general. We point out this more explicitly in the next section. Neverthless, the

above observations raise two natural questions.

Question 1.1. Let f ∈ Z[X] be of degree at least 4 and irreducible over Z. Does Theorem 1.1

extend to some family of such polynomials?
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Question 1.2. Does there exist an efficient algorithm that, taken as input a quadratic or cubic

polynomial f ∈ Z[x], returns Gf , or at least a good upper bound for Gf?

2. Preliminaries

This section is devoted to the auxiliary results we use in the proof of Theorem 1.1. First, let

us fix some notations. The letter p always denotes a prime number. For any x ≥ 1 and for

any set of integers S, we put S(x) := S ∩ [1, x]. We also use the Landau–Bachmann “Big Oh”

notation O and the associated Vinogradov symbols � and �. In particular, any dependence of

the implied constants is indicated either with subscripts or explicitly stated. Let

f(X) = akX
k + ak−1X

k−1 + · · ·+ a0,

be a polynomial of degree k ≥ 1 and with integer coefficients a0, . . . , ak. We define

(1) f̃(X) := a2k−2
k

∏
1≤i,j≤k

i 6=j

(X − (αi − αj)),

where α1, . . . , αk are all the roots of f in some algebraic closure. Observe that f̃ can be computed

from the relation

ResX(f(X), f(X + Y )) = a2
kY

kf̃(Y ),

where ResX is the resultant of polynomials respect to X. In particular, for k = 2

(2) f̃(X) = a2
2X

2 −∆f ,

while for k = 3

(3) f̃(X) =
(
a2

3X
2 + 3a1a3 − a2

2

)2
X2 −∆f ,

where ∆f denotes the discriminant of f . We have the following simple, but useful property.

Lemma 2.1. If f ∈ Z[X] is a nonconstant polynomial, then f and f̃ have the same Galois

group over Q.

Proof. The identity

αi =
1

k

 k∑
j=1

(αi − αj)−
ak−1

ak

 i = 1, . . . , k,

implies that f and f̃ have the same splitting field over Q, and hence the same Galois group. �

The next result deals with another interesting connection between f and f̃ , namely it relates f̃

to “close” solutions of the congruence f(X) ≡ 0 (mod p).

Lemma 2.2. Let f ∈ Z[X] be of degree k = 2 or 3 and suppose that p | f̃(r) for some prime

number p - 2ak and some positive integer r. Then there exists an integer n such that

f(n) ≡ f(n+ r) ≡ 0 (mod p).
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Proof. Let α1, . . . , αk be the roots of f in the algebraic closure of the finite field Fp. Since

p | f̃(r), by (1) we can assume that α1 − α2 = r, where r is considered as an element of Fp. If

k = 2, then from (2) we have that ∆f is a square modulo p and, considering p - 2a2, this implies

that α1, α2 ∈ Fp and the claim follows. If k = 3, then by (3) we once again deduce that ∆f is

a square modulo p and, by the Stickelberger parity theorem [2, Theorem 6.68], it follows that f

has at least one root in Fp. If α1 ∈ Fp or α2 ∈ Fp, then α1, α2 ∈ Fp, and we are done. If α3 ∈ Fp,

then α1 = 2−1(r − a1 − α3) ∈ Fp and α2 = α1 − r ∈ Fp, and we are done again. �

Remark 2.1. Note that the conclusion of Lemma 2.2 is no longer true if the hypothesis on the

degree is dropped. Take for instance, f(X) = X4 +1. We have that 3 | f̃(1), but the congruence

f(X) ≡ 0 mod 3 has no solutions at all.

Now for any nonconstant polynomial f ∈ Z[X] we define

Pf := {p : p | f(n) for some n ∈ N}.

It is well-known that Pf has a positive relative density δf in the set of prime numbers. More

precisely, the Frobenius density theorem says that δf = Fix(G)/#G, where G is the Galois group

of f over Q, and Fix(G) is the number of elements of G which have at least one fixed point, when

regarded as permutations of the roots of f (see, e.g., [17]). We need the following asymptotic

formula for #Pf (x).

Theorem 2.3. For any nonconstant polynomial f ∈ Z[X], we have

#Pf (x) = δf Li(x) +Of

(
x

exp(Cf

√
log x)

)
for all x ≥ 2, where Li denotes the logarithmic integral function and Cf > 0 is a constant

depending on f only.

Proof. The formula is a direct consequence of the effective version of the Chebotarev density

theorem [16, Theorem 3.4]. �

For each prime number p, let νp be the usual p-adic valuation. The next lemma concerns the

p-adic valuation of products consisting of consecutive values of a polynomial.

Lemma 2.4. Let f ∈ Z[X] be a polynomial without roots in N, and set

(4) QN :=
N∏

n=1

f(n),

for all positive integers N . Then, for any prime number p, we have

νp(QN ) =
tfN

p− 1
+Of

(
logN

log p

)
,

for all integers N ≥ 2, where tf is the number of roots of f in the p-adic integers.

Proof. This is [1, Theorem 1.2]. Note that in [1] the error term is written as O(logN), but

looking at the proof one can easily check that it is Of (logN/ log p). �

Our last auxiliary result establishes a lower bound for the number of “big” prime factors of an

irreducible polynomial.
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Lemma 2.5. Let f ∈ Z[X] be a nonconstant polynomial. For each positive integers N , let SN
be the set of all prime numbers p such that p > N and p | f(n) for some positive integer n ≤ N .

Then, we have

#SN �f (1− δf )N,

for all sufficiently large integers N .

Proof. We proceed similarly to the first part of the proof of [8, Theorem 5.1].

Define QN as in (4). If f has a positive integer root, then the claim follows. Hence we can

assume that f has no roots in N. In particular, QN 6= 0 for every integer N ≥ 1. Clearly,

SN = {p : p | QN , p > N}. Put S ′N := {p : p | QN , p ≤ N}, so that

(5) log |QN | =
∑
p∈SN

νp(QN ) log p+
∑
p∈S′N

νp(QN ) log p,

for every positive integer N . For the rest of the proof, all the implied constants may depend

on f . By Lemma 2.4, we have

νp(QN ) =
tfN

p− 1
+O

(
logN

log p

)
,

for every integer N ≥ 2, and thus

(6)
∑
p∈SN

νp(QN ) log p�
∑
p∈SN

log p ≤
∑
p∈SN

log |f(N)| � #SN logN.

Since S ′N ⊆ Pf (N), from Theorem 2.3 it follows that

#S ′N �
N

logN
,

and that, by partial summation,∑
p∈S′N

log p

p− 1
≤

∑
p∈Pf (N)

log p

p− 1
= δf logN +O(1) ,

for every integer N ≥ 2. Therefore,

(7)
∑
p∈S′N

νp(QN ) log p ≤
∑
p∈S′N

(
kN log p

p− 1
+O(logN)

)
≤ δfkN logN +O(N).

for every integer N ≥ 2. Finally, by Stirling’s formula

(8) log |QN | = kN logN +O(N).

Putting together (5), (6), (7), and (8), we get

#SN � (1− δf )kN +O

(
N

logN

)
,

and the desired result follows. �

Remark 2.2. Note that Lemma 2.5 is trivial if δf = 1.
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3. Proof of Theorem 1.1

Let f ∈ Z[X] be a nonconstant polynomial of degree 2 or 3. If f is reducible in Z[X], then there

exists a linear polynomial h ∈ Z[X] such that h(n) | f(n) for all integers n; and the existence of

Gf follows immediately from the existence of Gh proved by Evans [7]. Therefore, we can assume

that f is irreducible in Z[X]. Hence the Galois group of f over Q is precisely one of S2, S3,

or A3, and by the Frobenius density theorem δf is 1/2, 2/3, or 1/3, respectively. Further, by

Lemma 2.1 we know that f and f̃ has the same Galois group over Q, and, consequently, by the

Frobenius density theorem δ
f̃

= δf .

Let N be a sufficiently large positive integer. Define SN as the set of all prime numbers p

such that p > N/2 and p | f̃(r) for some positive integer r ≤ N/2. Thanks to the previous

considerations and Lemma 2.5, we have that

(9) #SN ≥ c1N,

for all sufficiently large N , where c1 > 0 is constant depending only on f . Moreover, Lemma 2.2

tell us that for each p ∈ SN there exists two integers z−p and z+
p such that

f(z−p ) ≡ f(z+
p ) ≡ 0 mod p,

and 0 < z+
p − z−p ≤ N/2 < p.

Now since ∑
p∈Pf

1

p
= +∞,

we can fix s ≥ 1 elements p1 < · · · < ps of Pf such that

(10)

s∏
i=1

(
1− 1

pi

)
<
c1

3
.

Moreover, by the definition of Pf , for each p ∈ Pf we can pick an integer zp such that f(zp) ≡ 0

(mod p).

Let h1 < . . . < hN1 be all the elements of {1, . . . , N} which are not divisible by any of the primes

p1, . . . , ps, and let k1 < · · · < kN2 be all the remaining elements, so that N = N1 +N2. By the

Eratosthenes’ sieve and (10), we have

(11) N1 ≤ N
s∏

i=1

(
1− 1

pi

)
+ 2s <

c1

2
N,

for all sufficiently large N . Let q1 < · · · < qt be all the elements of SN \ {p1, . . . , ps}. From (9)

and (11), we get that

t ≥ c1N − s >
c1

2
N > N1,

for all sufficiently large N . As a consequence, for any j = 1, . . . , N1, we can define rj = z−qj if

hj ≤ N/2, and rj = z+
qj if hj > N/2. Finally, we assume N sufficiently large so that N ≥ 2ps.

At this point, note that by construction p1, . . . , ps and q1, . . . , qN1 are all pairwise distinct. Thus,

by the Chinese Remainder Theorem, the system of congruences:{
n ≡ zpi (mod pi) i = 1, . . . , s

n ≡ rj − hj (mod qj) j = 1, . . . , N1
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has infinitely many positive integer solutions. If n is a solution, then it is easy to see that none

of the integers among

f(n+ 1), f(n+ 2), . . . , f(n+N)

is relatively prime to all the others.

Indeed, take any h ∈ {1, . . . , N}. On one hand, if h is divisible by some pi, then

f(n+ h) ≡ f(n+ h± pi) ≡ f(zpi) ≡ 0 (mod pi),

so that

gcd(f(n+ h), f(n+ h± pi)) > 1,

while h± pi ∈ {1, . . . , N} for the right choice of the sign, since N ≥ 2ps.

On the other hand, if h is not divisible by any of p1, . . . , ps, then h = hj for some j ∈ {1, . . . , N1}.
If hj ≤ N/2, then

f(n+ h) ≡ f(z−qj ) ≡ 0 (mod qj),

and

f(n+ h+ z+
qj − z

−
qj ) ≡ f(z+

qj ) ≡ 0 (mod qj),

so that

gcd(f(n+ h), f(n+ h+ z+
qj − z

−
qj )) > 1,

while h+ z+
qj − z

−
qj ∈ {1, . . . , N}. Similarly, if hj > N/2 then

gcd(f(n+ h+ z−qj − z
+
qj ), f(n+ h)) > 1,

while h+ z−qj − z
+
qj ∈ {1, . . . , N}.

Hence, the existence of Gf has been proved.

Remark 3.1. Note that when f has a linear factor h = a+dX ∈ Z[X], we can say more than the

existence of Gf . Namely, we may apply the results of Hajdu and Saradha [9] to get an effective

upper bound on Gf depending on the number of prime factors of d.
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