In the present work, we apply the asymptotic homogenization technique to the equations describing the dynamics of a heterogeneous material with evolving micro-structure, thereby obtaining a set of upscaled, effective equations. We consider the case in which the heterogeneous body comprises two hyperelastic materials and we assume that the evolution of their micro-structure occurs through the development of plastic-like distortions, the latter ones being accounted for by means of the Bilby–Kröner–Lee (BKL) decomposition. The asymptotic homogenization approach is applied simultaneously to the linear momentum balance law of the body and to the evolution law for the plastic-like distortions. Such evolution law models a stress-driven production of inelastic distortions, and stems from phenomenological observations done on cellular aggregates. The whole study is also framed within the limit of small elastic distortions, and provides a robust framework that can be readily generalized to growth and remodeling of nonlinear composites. Finally, we complete our theoretical model by performing numerical simulations.

An asymptotic homogenization approach to the microstructural evolution of heterogeneous media / Ramírez-Torres, Ariel; Di Stefano, Salvatore; Grillo, Alfio; Rodríguez-Ramos, Reinaldo; Merodio, José; Penta, Raimondo. - In: INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS. - ISSN 0020-7462. - 106:(2018), pp. 245-257. [10.1016/j.ijnonlinmec.2018.06.012]

An asymptotic homogenization approach to the microstructural evolution of heterogeneous media

Ramírez-Torres, Ariel;Di Stefano, Salvatore;Grillo, Alfio;
2018

Abstract

In the present work, we apply the asymptotic homogenization technique to the equations describing the dynamics of a heterogeneous material with evolving micro-structure, thereby obtaining a set of upscaled, effective equations. We consider the case in which the heterogeneous body comprises two hyperelastic materials and we assume that the evolution of their micro-structure occurs through the development of plastic-like distortions, the latter ones being accounted for by means of the Bilby–Kröner–Lee (BKL) decomposition. The asymptotic homogenization approach is applied simultaneously to the linear momentum balance law of the body and to the evolution law for the plastic-like distortions. Such evolution law models a stress-driven production of inelastic distortions, and stems from phenomenological observations done on cellular aggregates. The whole study is also framed within the limit of small elastic distortions, and provides a robust framework that can be readily generalized to growth and remodeling of nonlinear composites. Finally, we complete our theoretical model by performing numerical simulations.
File in questo prodotto:
File Dimensione Formato  
ART_SDiS_AG_RRR_JM_RP_IJNLM.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 807.43 kB
Formato Adobe PDF
807.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
IJNM2019_RToDisGriRRaMerPen_PostPrint.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 760.34 kB
Formato Adobe PDF
760.34 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2720458