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Reinaldo Rodŕıguez-Ramosb, José Merodioc, Raimondo Pentad,∗
4

aDipartimento di Scienze Matematiche “G. L. Lagrange”,5

Politecnico di Torino, Torino, 10129, Italy6
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Abstract14

In the present work, we apply the asymptotic homogenization technique to
the equations describing the dynamics of a heterogeneous material with evolv-
ing micro-structure, thereby obtaining a set of upscaled, effective equations.
We consider the case in which the heterogeneous body comprises two hyper-
elastic materials and we assume that the evolution of their micro-structure
occurs through the development of plastic-like distortions, the latter ones be-
ing accounted for by means of the Bilby-Kröner-Lee (BKL) decomposition.
The asymptotic homogenization approach is applied simultaneously to the
linear momentum balance law of the body and to the evolution law for the
plastic-like distortions. Such evolution law models a stress-driven production
of inelastic distortions, and stems from phenomenological observations done
on cellular aggregates. The whole study is also framed within the limit of
small elastic distortions, and provides a robust framework that can be readily
generalized to growth and remodeling of nonlinear composites. Finally, we
complete our theoretical model by performing numerical simulations.
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1. Introduction17

The study of material growth, remodeling and aging is of great impor-18

tance in Biomechanics, specially when the tissue, in which these processes19

occur, features a very complex structure, with different scales of observation20

and various constituents.21

In the literature, the study of heterogeneous materials follows several22

approaches. In this work we focus on the multi-scale asymptotic homoge-23

nization technique [4, 5, 8, 14, 77], which exploits the information available24

at the smallest scale characterizing the considered medium or phenomenon to25

obtain an effective description of the medium or phenomenon itself valid at26

its largest scale. This is achieved by expanding in asymptotic series the equa-27

tions constituting the mathematical model formulated at the lowest scale. As28

a result, the coefficients of the effective governing equations encode the infor-29

mation on the other hierarchical levels, as they are to be computed solving30

microstructural problems at the smaller scales. The multi-scale asymptotic31

homogenization approach has been successfully applied to investigate var-32

ious physical systems due to its potentiality in decreasing the complexity33

of the problem at hand. Biomechanical applications of asymptotic homoge-34

nization may be found mainly in nanomedicine [81], biomaterials modeling,35

such as the bone [58, 65], tissue engineering [24], poroelasticity [63], and ac-36

tive elastomers [64]. Most of the literature concerning applications of the37

asymptotic homogenization technique focuses on linearized governing equa-38

tions, as in this case it is possible to obtain, under a number of simplifying39

assumptions, a full decoupling between scales, which leads to a dramatic re-40

duction in the computational complexity, as also noted for example in [64].41

In fact, homogenization in nonlinear mechanics is usually tackled via average42

field approaches based on representative volume elements or Eshelby-based43

techniques (see e.g. [41] for a comparison between the latter and asymp-44

totic homogenization), as done for example in [11]. These homogenization45

approaches are typically well-suited when seeking for suitable bounds for the46

coefficients of the model, such as the elastic moduli, while asymptotic ho-47

mogenization can provide a precise characterization of the coefficients under48

appropriate regularity assumptions (namely, local periodicity).49

However, to the best of our knowledge and understanding, there exists50

only a few examples, e.g. [15, 68, 74, 75], dealing with the asymptotic ho-51

mogenization in the case of media undergoing large deformations. In [68],52

the static microstructural effects of periodic hyperelastic composites at finite53
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strain are investigated. In [74], the interactions between large deforming solid54

and fluid media at the microscopic level are described by using the two-scale55

homogenization technique and the updated Lagrangian formulation. In [15],56

the effective equations describing the flow, elastic deformation and transport57

in an active poroelastic medium were obtained. Therein, the authors consid-58

ered the spatial homogenization of a coupled transport and fluid-structure59

interaction model, incorporating details of the microscopic system and ad-60

mitting finite growth and deformation at the pore scale. Some works can be61

also found dealing with homogenization in the case of elastic perfectly plastic62

constituents [79, 83].63

Here we embrace the asymptotic homogenization approach and consider64

a heterogeneous body composed of two hyperelastic solid constituents sub-65

jected to the evolution of their internal structure. We refer to this phe-66

nomenon as to material remodeling and we interpret it with the production67

of plastic-like distortions. The wording “material remodeling” is used as a68

synonym of “evolution of the internal structure” of a tissue, and is intended in69

the sense of [16], who states that “biological systems can adapt their structure70

[...] to accommodate a changed mechanical load environment”. In this case,71

always in the terminology of [16] and [80], one speaks of epigenetic adap-72

tation (or material remodeling). In the framework of the manuscript, such73

adaptation is assumed to occur through plastic-like distortions that represent74

processes like the redistribution of the adhesion bonds among the tissue cells.75

It is worth to recall in which sense the concept of “plastic distortions”,76

conceived in the context of the Theory of Plasticity (cf. e.g. [50, 55]),77

and originally referred to non-living materials such as metals or soils, can78

be imported to describe the structural evolution of biological tissues. To79

this end, it is important to emphasize that the wording “plastic distortions”80

is understood as the result of a complex of transformations that conducts81

to the reorganization of the internal structure of a material, and that —82

as anticipated in the Introduction— such reorganization is referred to as83

“remodeling” in the biomechanical context.84

The ways in which the structural tranformations may take place in a85

given material depend on the structural properties of the material itself. For86

this reason, the plasticity in metals is markedly different from that occurring87

in amorphic materials. In the case of metals, indeed, for which the internal88

structure is granular and characterized by the arrangement of the atomic lat-89

tice within each grain, plastic distortions are the macroscopic manifestation90

of the formation and evolution of lattice defects. As reported in [55], such91
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defects can be due, for example, to edge dislocations, wedge disclinations,92

missing atoms at some lattice sites, or to the presence of atoms in the lat-93

tice interstices. To describe how the defects evolve, thereby giving rise to the94

plastic distortions, one should compare the real lattice at the current instant95

of time with an ideal lattice, and decompose the overall deformation (i.e.,96

shape change and structural transformation) into an elastic and an inelastic97

contribution [55]. The elastic contribution describes the part of deformation98

that is recoverable by completely relaxing mechanical stress, whereas the in-99

elastic contribution represents the structural variation, which, in general, is100

of irreversible nature.101

Clearly, metals have structural features markedly different from those of102

living matter. Still, some of the fundamental mechanisms that trigger the103

reorganization of their internal structure can be adapted to describe the104

remodeling of biological tissues.105

For instance, in the case of bones, plastic-like phenomena are due to106

the formation of microcracks that, in turn, favors the gliding of the material107

along the direction of the opening of the cracks [17, 86]. Lastly, as anticipated108

above, in the case of biological tissues such as cellular aggregates, the phe-109

nomenon analogous to the generation of dislocations is the rearrangement of110

the adhesion bonds among the cells or the reorganization of the extracellular111

matrix due to the reorientation of the collagen fibers or their deposition and112

resorption, as is the case for blood vessels [48]. Also in all these situations,113

the comparison of the real configuration of the tissue with an “ideal” one,114

taken as reference, permits the separation of the overall deformation into an115

elastic part and a structure-related, “plastic-like” part.116

Here, taking inspiration from the theory of finite Elastoplasticity [55, 78,117

34], we describe the plastic-like distortions by invoking the Bilby-Kröner-Lee118

(BKL) decomposition of the deformation gradient tensor, and rephrasing it in119

a scale-dependent fashion. We remark that, at each of the medium’s charac-120

teristic scales, a tensor of plastic distortions is introduced, which accounts for121

the fact that the structural variations of the medium cannot be expressed, in122

general, in terms of compatible deformations. Our study is conducted within123

a purely mechanical framework and under the assumption of negligible iner-124

tial forces. These hypotheses imply that the model equations reduce to a set125

comprising a scale-dependent, quasi-static law of balance of linear momen-126

tum and an evolution law for the tensor of plastic-like distortions. The latter127

one is assumed to obey a phenomenological flow rule driven by stress.128

The manuscript is organized as follows. In Section 2, we introduce the129
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fundamental notions related to the separation of scales, kinematics, and the130

Bilby-Kröner-Lee decomposition for the heterogeneous material. Therein,131

the kinematics of the considered medium is discussed, which has to account132

for the different length-scales characterizing the heterogeneities and results133

into the definition of a scale-dependent deformation gradient tensor. In Sec-134

tion 3, the problem to be solved is formulated, and in Section 4, the two-135

scales asymptotic homogenization technique is applied to obtain the local136

and the homogenized sub-problems. In Section 5, we prescribe a constitutive137

equation for the response of the material and, independently, an evolution138

equation for the tensor of plastic-like distortions. In that respect, the local139

and homogenized problems derived in Section 4 are formulated by consid-140

ering the De Saint-Venant strain energy density and we demonstrate the141

relationship between our new model and the classical ones. In Section 6 we142

outline a computational scheme to solve the resulting up-scaled model and,143

in Section 7, we address the numerical results of our simulations. Finally,144

some concluding remarks on the ongoing work, along with suggestions for145

future research, are summarized in Section 8. We highlight the novelty of146

our approach, and we explain how it may contribute to the understanding of147

the mechanics of heterogeneous media with evolving micro-structure.148

2. Theoretical background149

2.1. Separation of scales150

The homogenization of a highly heterogeneous medium is only possible151

when the characteristic length of the the local structure (`0) and the char-152

acteristic length of the material, or of the phenomenon, of interest (L0) are153

well separated. This condition of separation of scales can be expressed as154

ε0 :=
`0
L0

� 1. (1)

There may exist more than two coexisting scales and, if they are well sepa-155

rated from each other, a homogenization approach is possible. In this case,156

we then move from the smallest scale to the largest one by homogenization157

[1, 8, 51, 82, 69].158

Condition (1) is taken as a base assumption for all homogenization pro-159

cesses. The two characteristic length scales `0 and L0 introduce two di-160

mensionless spatial variables in the reference configuration, Ỹ = X/`0 and161

X̃ = X/L0, where X is said to be the physical spatial variable, whereas Ỹ162
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and X̃ represent the microscopic and the macroscopic non-dimensional spa-163

tial variables, respectively. By using (1), Ỹ and X̃ can be related through164

the expression165

Ỹ = ε−10 X̃. (2)

Given a field Φ defined over the region of interest of the heterogeneous166

medium, the separation of scales allows to rephrase the space dependence of167

Φ as Φ(X) = Φ̌(X̃(X), Ỹ (X)), and the spatial derivative of Φ takes thus the168

form169

GradXΦ = L−10

(
GradX̃Φ̌ + ε−10 GradỸ Φ̌

)
. (3)

By following this approach, all equations should be written in non-dimensional170

form. In the literature, the switch to the auxiliary variables X̃ and Ỹ is often171

omitted. However, as shown for example in [4], both paths are equivalent,172

provided that the dimensional formulation of the problem consistently ac-173

counts for any asymptotic behavior of the involved fields and parameters174

(see e.g. [62] and the discussion therein concerning problems where such a175

behavior is actually deduced via a non-dimensional analysis). By exploiting176

this result, in what follows, our analysis is carried out directly in a system of177

physical variables X and Y . Moreover, by adopting the approach usually fol-178

lowed in asymptotic multiscale analysis, we assume that each field and each179

material property characterizing the considered medium are functions of both180

X and Y , with Y = ε−10 X. Roughly speaking, the dependence on X captures181

the behavior of a given physical quantity over the largest length-scale, while182

the dependence on Y captures the behavior over the smallest one. We express183

this property by introducing the notation Φε(X) = Φ(X, ε−10 X) = Φ(X, Y )184

[66]. Moreover, for a fixed X, we assume that Φ(X, Y ) is periodic with185

respect to Y .186

In the classical theory of two-scale asymptotic homogenization [5, 8, 14],187

the small scaling dimensionless parameter ε0 is constant. However, in the188

case of a composite material subjected to deformation and change of internal189

structure (as is the case, for instance, when plastic-like distortions occur),190

the characteristic macroscopic and microscopic lengths, which refer to the191

body and to its heterogeneities, respectively, depend on X and t, and should192

thus be denoted by `(X, t) and L(X, t). Therefore, the corresponding scaling193

parameter, obtained as the ratio ε(X, t) = `(X, t)/L(X, t), is also a func-194

tion of X and t, which need not be equal to ε0 in general. This variability195
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notwithstanding, if ε(X, t) is bounded from above for all X and for all t,196

and if the upper bound is much smaller than unity, we can indicate such197

upper bound with ε, and use this constant as a scaling parameter for our198

asymptotic analysis.199

2.2. Kinematics200

Let us denote by Bε a continuum body with periodic microstructure, and201

by S the three-dimensional Euclidean space. Furthermore, we denote by202

Bε0 the reference, unloaded configuration of Bε, in which the body’s periodic203

micro-structure is reproduced. Now, let us assume that χε : Bε0 × T → S204

describes the motion of the heterogeneous body, where T = [t0, tf [ is an205

interval of time. Then, the region occupied by the body at time t ∈ T206

is Bεt := χε(Bε0, t) ⊂ S and is said to be its current configuration. Each207

point x ∈ Bεt is such that x = χε(X, t), with X ∈ Bε0 being the point’s208

reference placement. The deformation from Bε0 to Bεt is characterized by the209

deformation gradient, F ε(X, t), which is defined as F ε(X, t) = Tχε(X, t)210

[53], with Tχε being the tangent map of the motion χε, defined from the211

tangent space TXBε0 into TxS. In the sequel, however, since our focus is on212

Homogenization Theory, we find it convenient to use the less formal definition213

F ε = I + Graduε, (4)

where I is the second-order identity tensor and Graduε denotes the gradient214

operator of the displacement uε. The condition Jε = detF ε > 0 must be215

satisfied in order for χε to be admissible. The symmetric, positive definite,216

second-order tensor Cε = (F ε)TF ε is the right Cauchy-Green deformation217

tensor induced by F ε. For our purposes, we partition Bε0 into two sub-218

domains B1
0 and B2

0, such that B̄1
0 ∪ B̄2

0 = B̄ε0 and B̄1
0 ∩ B2

0 = B1
0 ∩ B̄2

0 = ∅,219

where the bar over a set denotes its closure. We let Γε0 stand for the interface220

between B1
0 and B2

0. Particularly, B1
0 denotes the matrix of Bε (also referred221

to as host phase) and B2
0 a collection of N disjoint inclusions. The periodic222

cell in the reference configuration is denoted by Y0. The portion of matrix223

contained in Y0 is indicated by Y1
0 , while Y2

0 is the inclusion in Y0. In each224

cell, Y1
0 and Y2

0 are such that Ȳ1
0 ∪ Ȳ2

0 = Ȳ0 and Ȳ1
0 ∩Y2

0 = Y1
0 ∩ Ȳ2

0 = ∅. The225

symbol Γ0 indicates the interface between Y1
0 and Y2

0 . In the present work, we226

assume that the periodicity of the body’s micro-structure is preserved even227

though the body evolves by both changing its shape and varying its internal228

structure. In general, however, this is not the case. Clearly, our hypothesis is229
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unrealistic in several circumstances, but it might be helpful to describe those230

situations in which the breaking of the material symmetries occurs at a scale231

different from those of interest, as is the case, for instance, when the plastic232

distortions occur in a tissue with evolving material properties [49], that are233

not directly related to the change of the tissue’s micro-geometry. On the234

other hand, for nonperiodic media, the macro model is still valid when one235

assumes local boundedness. In that case, the coefficients are simply to be236

retrieved experimentally, as the “cell” problem is no longer to be computed237

on the cell but on the whole micro domain, which would be more complex238

than the original problem.239

Moreover, we define χε1 := χε|B10 : B1
0 × T → S such that B1

t := χε1(B1
0, t)240

denotes the host phase at the current configuration and χε2 := χε|B20 : B2
0 ×241

T → S, with B2
t := χε2(B2

0, t) denoting the inclusions. Specifically, we enforce242

the condition B̄1
t ∪B̄2

t = B̄εt , with B̄1
t ∩B2

t = B1
t ∩B̄2

t = ∅, and denote by Γεt the243

interface between B1
t and B2

t . In addition, we let Yt indicate the periodic cell244

in the current configuration, with Ȳ1
t ∪ Ȳ2

t = Ȳt, Ȳ1
t ∩Y2

t = Y1
t ∩ Ȳ2

t = ∅, and245

with Γt being the interface between Y1
t and Y2

t (see Fig. 1). We emphasize246

that Y1
t is the portion of matrix and Y2

t is the inclusion in Yt. We note that247

inside a single cell it can be present also a collection of inclusions and, in248

such a case, we should consider multiple interface conditions [60].249

2.3. Multiplicative decomposition250

When the body Bε is subjected to a system of external loads, the change251

of its shape could be accompanied by a rearrangement of its intrinsic struc-252

ture. This process is generally inelastic and may not be described just in253

terms of deformation. Moreover, when mechanical agencies are removed, the254

body is generally unable to recover the unloaded configuration Bε0, and may255

occupy a configuration characterized by the presence of residual stresses and256

strains. To bring the body into a fully relaxed state, an ideal tearing process257

has to be introduced [55]. More specifically, for each material point X ∈ Bε,258

we individuate a small neighborhood of X, referred to as body element, we259

ideally cut it out from the body, and we let it relax until it reaches a stress-260

free state. Such state is the ground state of the relaxed body element and261

is called natural state. This concept, originally used in the theory of elasto-262

plasticity (see [50, 55]), has been used in the biomechanical context by various263

authors like, for instance, [23, 76, 30, 26, 27, 42, 44, 18, 55, 34, 19]. Before264

going further with the use of the BKL decomposition, we mention that, in265

the literature, there exist other approaches to the issue of residual stresses in266
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biological tissues, which call neither for the multiplicative decomposition of267

the deformation gradient tensor, nor for the introduction of an “intermediate,268

relaxed configuration”. One recent publication adhering to this philosophy269

is for example [13], in which the authors warn that the intermediate config-270

uration may “not exist in physical reality and must be postulated a priori”.271

Although we are aware of the fact that a framework based on the BKL-272

decomposition may lead in some cases to assume unrealistic results —as any273

other framework would do—, we prefer here to adhere to the BKL approach274

for consistency with previous works of ours.275

By performing the ideal process described above for all the body points, a276

collection of relaxed body pieces is obtained, in which each piece finds itself277

in its natural state. We denote such collection by Bεν . In the language of278

continuum mechanics, these physical considerations lead to the BKL decom-279

position [55, 34]. Although summarizing these theoretical results is useful for280

sake of completeness, the consequences of the BKL decomposition are well-281

known, as it is one the pillars of Elastoplasticity. For this reason, we do not282

fuss over its theoretical justification, and we highlight, rather, the fact that283

one of the purposes of this work is to investigate the use of a scale-dependent284

BKL decomposition. In detail, by referring to Figure 1, we invoke a multi-285

plicative decomposition of the deformation gradient F ε that is parameterized286

by the scaling ratio ε, i.e.,287

F ε = F ε
eF

ε
p , (5)

where the tensors F ε
e and F ε

p describe, respectively, the elastic and the in-288

elastic distortions contributing to F ε Along with (5), we also define the289

determinants Jεe = det()F ε
e and Jεp = det()F ε

p , which are both strictly pos-290

itive. Consistently with the notation introduced above, it holds true that291

F ε
e (X) = Fe(X, Y ), F ε

p(X) = Fp(X, Y ), and F ε(X) = F (X, Y ) as well as292

Jεe (X) = Je(X, Y ) and Jεp(X) = Jp(X, Y ).293

In this work, we focus on remodeling, i.e., plastic-like distortions that294

occur to modify the internal structure of Bε. Although this phenomenon is295

not visible, it could lead to the alteration of the mechanical properties of Bε.296

3. Formulation of the problem297

We consider a composite material comprising two solid constituents, whose298

point-wise constitutive response is hyperelastic. Therefore, to model its me-299

chanical behavior, we introduce the scale-dependent strain energy function,300
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Figure 1: Schematic of a composite material with periodic internal micro-structure and
subjected to inelastic remodeling distortions. From left to right: Magnification of an
excerpt of material and description of its nested, periodic micro-structure. Change of
shape of the body from the reference to the current configuration, and definition of the
conglomerate of relaxed body pieces, each in its natural state. Magnification of an excerpt
of material, taken from the body’s current configuration, and description of its deformed,
and remodeled, micro-structure.

defined per unit volume of the natural state,301

ψ̌ν(X, t) = ψεν(F
ε
e (X, t), iε(X, t)) = ψν(Fe(X, Y, t), i(X, Y, t)), (6)

where i is defined by the expression i(X, Y, t) = (X, Y ), i.e., i extracts the302

spatial pair (X, Y ) from the triplet (X, Y, t). From (6) we can derive the first303

Piola-Kirchoff stress tensor,304

T ε = Jεp
∂ψεν
∂F ε

e

(
F ε

p

)−T
, (7)

where Jεp = detF ε
p . In particular, if we neglect body forces and inertial terms,305

the balance of linear momentum reads,306 
DivT ε = 0, in Bε0 \ Γε0 × T ,
T ε ·N = T̄ , on ∂TBε0 × T ,
uε = ū, on ∂uBε0 × T ,

(8)

where T̄ and ū are, respectively, the prescribed traction and displacement307

on the boundary ∂Bε0 = ∂TBε0 ∪ ∂uBε0 with ∂TBε0 ∩ ∂uBε0 = ∂TBε0 ∩ ∂uBε0 = ∅308
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and N is the outward unit vector normal to the surface ∂Bε0. Continuity309

conditions for displacement and traction are imposed,310

JuεK = 0 and JT ε ·NYK = 0, on Γ0 × T , (9)

where J•K denotes the jump across the interface between the two constituents311

and NY defines the unit outward normal to Γ0. Moreover, problem (8)312

must be supplemented with an appropriate evolution law for F ε
p . It is worth313

mentioning that the homogenization process can be performed regardless of314

the particular choice of external boundary conditions (Dirichlet-Neumann315

in this case). This means that the formulation presented in this work is316

potentially applicable also to other external boundary conditions, such as317

e.g. those of Robin-type. This is due to the fact that, as pointed out in [69],318

also in the present study the homogenization is applied in regions sufficiently319

far away from the outer boundary of the considered medium. For problems320

in which it is necessary to homogenize also close to the outer heterogeneous321

boundaries, we refer to [8, 57, 46].322

Remark 1. In the present work, we impose conditions (9) for displacements323

and tractions just to exemplify the homogenization technique applied to het-324

erogeneous media with evolving microstructure. In other words, we assume325

that the contact interface between the constituents is ideal. This means that326

the displacements are congruent, and thus continuous, and that linear mo-327

mentum is conserved across the interface, which in our context implies the328

continuity of the tractions. However, the hypothesis of the ideal interface can329

be relaxed in some biological situations. For instance, in cancerous tissues,330

there exist cross-links between normal and malignant cells, whose density and331

strength determine a spring constant that relates the normal stresses on each332

cell surface, thereby making it non-ideal [47, 37]. Another example of non-333

ideal interface is the periodontal ligament, which represents the thin layer334

between the cementum of the tooth to the adjacent alveolar bone [28]. In the335

context of composite materials, when non-ideal interfaces are accounted for,336

the interface conditions are suitably reformulated [38, 39, 7, 6]. In particular,337

the asymptotic homogenization technique has been applied for linear elastic338

periodic fiber reinforced composites with imperfect contact between matrix and339

fibers (see e.g. [36]).340
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4. Asymptotic homogenization of the balance of linear momentum341

A formal two-scale asymptotic expansion is performed for the displace-342

ment uε, which thus reads343

uε(X, t) = u(0)(X, t) +
+∞∑
k=1

u(k)(X, Y, t)εk, (10)

where, for all k ≥ 1, u(k) is periodic with respect to Y . Following [68] we344

consider the leading order term of the expansion (10) to be independent345

of the fast variable Y . From formula (4), the expansion (10), and taking346

into account the property of scale separation, it follows that the deformation347

gradient tensor can be written as348

F ε(X, t) =
+∞∑
k=0

F (k)(X, Y, t)εk, (11)

with the notation349

F (0) := I + GradXu
(0) + GradYu

(1), (12a)

F (k) := GradXu
(k) + GradYu

(k+1), ∀ k ≥ 1, (12b)

where GradX and GradY are the gradient operators with respect to X and Y ,350

respectively. Now, the following two-scale asymptotic expansion is proposed351

for the first Piola-Kirchhoff stress tensor T ε,352

T ε(X, t) =
+∞∑
k=0

T (k)(X, Y, t)εk, (13)

where the fields T (k) are periodic with respect to Y . By substituting the353

power series representation (13) into (8), using the scale separation condition,354

and multiplying the result by ε, the following multi-scale system is obtained355

DivT ε =
+∞∑
k=0

D(k)εk = 0, (14)

with356

D(0) := DivY T
(0), (15a)
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D(k) := DivXT
(k−1) + DivY T

(k), ∀ k ≥ 1. (15b)

We require that the equilibrium equation (14) is satisfied at every ε, which357

amounts to impose the conditions358

DivY T
(0) = 0, (16a)

DivXT
(k−1) + DivY T

(k) = 0, ∀ k ≥ 1. (16b)

At this point we introduce the average operator over the microscopic cell, i.e.359

〈•〉 =
1

|Yt|

∫
Yt
• dY, (17)

where |Yt| represents the volume of the periodic cell Yt at time t. Indeed,360

because of the deformations and distortions to which the microscopic, refer-361

ence periodic cell is subjected, Yt is different at every time instant. Averaging362

(16b) over the microscopic cell yields, for k = 1,363

〈DivXT
(0)〉+

1

|Yt|

∫
∂Yt
T (1) ·NdY = 0, (18)

where, on the left-hand side, we have applied the divergence theorem. Since364

the contributions on the periodic cell boundary ∂Yt cancel due to the Y -365

periodicity, the integral over Yt is equal to zero, and (18) becomes366

〈DivXT
(0)〉 = 0. (19)

Here, we restrict our analysis to the particular case in which the periodic367

cell can be uniquely chosen independently of X, which implies that the in-368

tegration over Yt and the computation of the divergence commute. This369

assumption is also referred to as macroscopic uniformity, see also [9, 40, 59]370

for examples dealing with non-macroscopically uniform media in the context371

of poroelasticity and diffusion. Therefore, Equation (19) can be recast as372

DivX〈T (0)〉 = 0. (20)

Equations (16a) and (20) represent, respectively, the local and the homoge-373

nized equation associated with the original one, stated in (8). Both equations374

still need to be supplemented with the corresponding interface, boundary, and375
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initial conditions. Note that, although both problems feature no time deriva-376

tive, initial conditions are required because T (0) depends on the variable F (0)
p ,377

which satisfies an evolution equation in time.378

We remark that the leading term T (0) = T (0)(X, Y, t) of the multi-scale379

expansion (13) is the unknown, both in (16a) and in (20). To identify T (0),380

we propose here to expand F ε
p and ψεν as381

F ε
p(X, t) =

+∞∑
k=0

F (k)
p (X, Y, t)εk, (21a)

ψεν(X, t) =
+∞∑
k=0

ψ(k)
ν (Fe(X, Y, t), X, Y )εk, (21b)

where F (k)
p and ψ

(k)
ν are periodic in Y . By using (5), (11) and (21a), we can382

deduce a series expansion for F ε
e in powers of ε, where the leading order term383

F (0)
e is given by384

F (0)
e = F (0)(F (0)

p )−1. (22)

Following [15] and [68], T (0) is therefore supplied constitutively as385

T (0) = J (0)
p

∂ψ
(0)
ν

∂F (0)
e

(F (0)
p )−T , (23)

with ψ
(0)
ν = ψ

(0)
ν (F (0)

e (X, Y, t), X, Y ) and J
(0)
p = detF (0)

p . To obtain the386

cell problem, equation (14) must be supplemented with the corresponding387

interface conditions. This is done by substituting the asymptotic expansions388

of uε and of T ε into the interface conditions JuεK = 0 and JT ε ·NYK = 0.389

Both conditions are satisfied at any order of ε. At the order ε0, we simply390

obtain JT (0) ·NYK = 0 for the stresses, and that the condition Ju(0)K = 0 is391

trivially satisfied, because u(0) depends solely on X and t. Thus, the interface392

condition on the displacements is written only for u(1) and reads, Ju(1)K = 0.393

By summarizing these results, the cell problem at zero order of the epsilon394

parameter can be stated as395 
DivY T

(0) = 0, in Y0 \ Γ0 × T ,
Ju(1)K = 0, on Γ0 × T ,
JT (0) ·NYK = 0, on Γ0 × T .

(24)
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Together with the cell problem, we also need to formulate the macro-scopic396

homogenized problem. To this end, we take equation (20) and complete it397

with a set of boundary conditions. This is done by substituting the asymp-398

totic expansions of T ε and uε into the boundary conditions T ε · N = T̄399

and uε = ū, respectively. Thus, equating the coefficients at order ε0, and400

averaging the results over the unit cell, we find the homogenized problem,401 
DivX〈T (0)〉 = 0, in Bh × T ,
〈T (0)〉 ·N = T̄ , on ∂TBh × T ,
u(0) = ū, on ∂uBh × T ,

(25)

where Bh denotes the homogeneous macro-scale domain in which the homog-402

enized equations are defined.403

The problem (25) has to be solved along with a homogenized evolution404

equation for F (0)
p and the initial condition associated with it. In addition, we405

remark that, according to (25), the boundary tractions acting on ∂TBh are406

balanced only by the normal component of the average of the leading order407

stress, T (0), and only the leading order displacement, u(0), has to be equal408

to the displacement ū, imposed on ∂uBh.409

Remark 2. In the medical scientific literature, there exist studies that iden-410

tify the existence of anatomical boundary layers interposed between the brain411

surface and tumors (see e.g. [72]). Here we do not address boundary layer412

phenomena, which are usually neglected in the asymptotic homogenization413

literature. The homogenization process described in this work is fine for re-414

gions far enough away from the boundary so that its effect is not felt because,415

close to the boundaries, the material will not behave as an effective material416

with homogenized coefficients. To properly account for boundary effects, the417

so-called boundary-layer technique could be used [8, 57].418

5. Constitutive framework and evolution law419

In this section, we prescribe a constitutive equation for the response of the420

material and, independently, an evolution equation for the tensor of plastic-421

like distortions.422

5.1. Constitutive law423

In the following, we formulate the local and homogenized problems for a424

specific constitutive law. In general, this process can be rather cumbersome425
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for complicated strain energy densities, and it becomes even more involved426

when plastic-like distortions are accounted for. To reduce complexity, we427

choose a very simple constitutive law for ψεν , such as the De Saint-Venant428

strain energy density,429

ψεν =
1

2
Eε

e : C ε : Eε
e, (26)

where Eε
e = 1

2

(
(F ε

e)
TF ε

e − I
)

is the elastic Green-Lagrange strain tensor and430

C ε(X) = C (X, Y ) is the positive definite fourth-order elasticity tensor, which431

satisfies both major and minor symmetries, i.e. Cijkl = Cjikl = Cijlk = Cklij.432

Particularly, we consider that the constituents of the heterogeneous material433

are isotropic, and thus434

C ε = 3κεK + 2µεM , (27)

where κε(X) = κ(X, Y ) is the bulk modulus, µε(X) = µ(X, Y ) is the shear435

modulus, and the fourth-order tensors K = 1
3
(I ⊗ I) and M = I − K436

extract the spherical and the deviatoric part, respectively, of a symmetric437

second-order tensorA, i.e., K : A = 1
3
tr(A)I and M : A = A− 1

3
tr(A)I :=438

dev(A) [84, 85]. We remark that the fourth-order identity tensor I is the439

identity operator over the linear subspace of symmetric second-order tensors.440

Indeed, for every A such that A = AT , it holds that I : A = A. In441

terms of I, an explicit expression of I is given by I = 1
2

[I⊗I + I⊗I] (in442

components: Iijkl = 1
2

[IikIjl + IilIjk] [17]).443

We can identify the leading order term in the expansion of the constitutive444

law (26), which reads445

ψ(0)
ν =

1

2
E(0)

e : C : E(0)
e , (28)

with E(0)
e = 1

2

(
(F (0)

e )TF (0)
e − I

)
. We recall that, although the expression of446

ψ
(0)
ν in (28) depends only on E(0)

e , the material coefficient C is still a two-447

scale function and should be thus interpreted as C (X, Y ). As a consequence,448

ψ
(0)
ν is not homogenized yet.449

By taking into account the major and minor symmetries of C , we obtain450

S(0)
ν =

∂ψ
(0)
ν

∂E(0)
e

= C : E(0)
e = λtr(E(0)

e )I + 2µE(0)
e , (29)
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where S(0)
ν is the leading order term of the second Piola-Kirchhoff stress451

tensor written with respect to the natural state, λ = κ − 2
3
µ is Lamé’s452

constant, and E(0)
e is given by453

E(0)
e = (F (0)

p )−T
(
E(0) −E(0)

p

)
(F (0)

p )−1, (30)

with E(0) = 1
2

(
(F (0))TF (0) − I

)
and E(0)

p = 1
2

(
(F (0)

p )TF (0)
p − I

)
.454

By pulling S(0)
ν back to the reference configuration, and recalling that the455

plastic-like distortions are assumed to be isochoric in our framework, (i.e.456

Jεp = 1), we obtain the second Piola-Kirchhoff stress tensor457

S(0) = CR : (E(0) −E(0)
p ), (31)

where458

CR = (F (0)
p )−1⊗ (F (0)

p )−1 : C : (F (0)
p )−T ⊗ (F (0)

p )−T

= 3λK (0)
p + 2µI (0)

p , (32)

is the elasticity tensor pulled-back to the reference configuration through459

F (0)
p , and, upon setting B(0)

p = (F (0)
p )−1(F (0)

p )−T , we employed the notation460

K (0)
p = 1

3
B(0)

p ⊗B(0)
p , (33a)

I (0)
p = 1

2

[
B(0)

p ⊗B(0)
p +B(0)

p ⊗B(0)
p

]
. (33b)

We remark that K (0)
p extracts the “volumetric part” of a generic second-461

order tensor, taken with respect to the inverse plastic metric tensor B(0)
p i.e.462

for all A = AT , it holds that K (0)
p : A = 1

3
tr(B(0)

p A)B(0)
p . Furthermore,463

I (0)
p transforms A into I (0)

p : A = B(0)
p AB

(0)
p and M (0)

p = I (0)
p − K (0)

p464

extracts the “deviatoric part” of A with respect to the metric tensor B(0)
p ,465

i.e. M (0)
p : A = B(0)

p AB
(0)
p − 1

3
tr(B(0)

p A)B(0)
p . We note that similar results466

have been obtained in the case of non-linear elasticity in [25].467

Next, we notice that F (0) can be written as468

F (0) = I +H , (34)

with H = GradXu
(0) + GradYu

(1). Thus, by substituting (34) in E(0)
e ,469

the result into (31), and retaining only the terms linear in H , S(0) can be470

linearized as471

S
(0)
lin = CR : (symH −E(0)

p ). (35)
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We recall now that, at the leading order, the first Piola-Kirchhoff stress tensor472

reads T (0) = F (0)S(0). Hence, its linearized form is given by473

T
(0)
lin = CR : symH − (I +H)(CR : E(0)

p ). (36)

Looking at the definition of CR in (32), it can be noticed that our model re-474

solves at the macro-scale the structural evolution of the considered medium475

through the dependence of CR on F (0)
p , which indeed describes the produc-476

tion of material inhomogeneities [21, 22, 23]. Additionally, our model is also477

capable of simultaneously resolving the material heterogeneities at both the478

micro- and macro-scale through the dependence of CR on X and Y . The lat-479

ter dependence in fact, keeps track of the variability of the elastic coefficient480

at both scales.481

Because of Equations (33a) and (33b), CR possesses the same symmetry482

properties of C , i.e.483

(CR)IJKL = (CR)JIKL = (CR)IJLK = (CR)KLIJ , (37)

and therefore, T
(0)
lin can be written as484

T
(0)
lin = CR : H − (I +H)(CR : E(0)

p ). (38)

Local problem. Substituting (38) in the equation of the local problem (24),485

the linear momentum balance law is rephrased as486

DivY
[
CR : H − (I +H)(CR : E(0)

p )
]

= 0, (39)

or, equivalently,487

DivY
[
CR : GradYu

(1) −GradYu
(1)(CR : E(0)

p )
]

=

−DivY
[
CR : GradXu

(0) − (I + GradXu
(0))(CR : E(0)

p )
]
. (40)

In the absence of plastic distortions, i.e., when F ε
p = I, Equation (40) coin-488

cides with the equation of the classical cell problem encountered in the ho-489

mogeneization of linear elasticity, which is known to admit a unique solution,490

up to a Y -constant function, if the average over the cell of the right-hand-side491

vanishes identically (in the jargon of Homogenization Theory, this condition492

is referred to as solvability condition or compatibility condition) [5]. In our493
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case, since the pulled-back elasticity tensor CR is periodic in Y , while u(0) is494

independent of Y , the solvability condition is satisfied, i.e.,495 〈
DivY

[
CR : GradXu

(0) − (I + GradXu
(0))(CR : E(0)

p )
]〉

= 0. (41)

Exploiting the linearity of equation (40) in u(1), we make the ansatz496

u(1)(X, Y, t) = ξ(X, Y, t) : GradXu
(0)(X, t) + ω(X, Y, t), (42)

where ξ and ω are a third-order tensor field and a vector field, both periodic497

in Y .498

We now require that ξ and ω satisfy two independent cell problems. The499

cell problem for ξ reads500 

DivY
[
CR : TGradY ξ − TGradY ξ(CR : E(0)

p )
]

= DivY
[
− CR + I⊗(CR : E(0)

p )
]
, in Y0 \ Γ0 × T ,

JξK = 0, on Γ0 × T ,
q[

CR : TGradY ξ − TGradY ξ(CR : E(0)
p )

+CR − I⊗(CR : E(0)
p )
]
·NY

y
= 0, on Γ0 × T .

(43)

Before going further, some words of explanation on the notation are nec-501

essary. First, we notice that GradY ξ is a fourth-order tensor function, which502

admits the representation GradY ξ = (∂ξABC)/(∂YD)eA⊗eB⊗eC⊗eD. Then,503

TGradY ξ is a fourth-order tensor function obtained by ordering the indices504

of GradY ξ in the following fashion505

TGradY ξ = (TGradY ξ)ABCDeA ⊗ eB ⊗ eC ⊗ eD
= (GradY ξ)ACDBeA ⊗ eB ⊗ eC ⊗ eD

=
∂ξACD
∂YB

eA ⊗ eB ⊗ eC ⊗ eD. (44)

The cell problem for ω is given by506 

DivY
[
CR : GradYω −GradYω(CR : E(0)

p )
]

= DivY
[
CR : E(0)

p

]
, in Y0 \ Γ0 × T ,

JωK = 0, on Γ0 × T ,
q(

CR : GradYω −GradYω(CR : E(0)
p )

−CR : E(0)
p

)
·NY

y
= 0, on Γ0 × T .

(45)

19



By virtue of the linearization process, we obtain two auxiliary cell problems507

where the macroscopic term GradXu
(0) is not explicitly present. Indeed, this508

is in general possible only when accounting for the linearized deformations’509

regime, see also [15]. Then, the dependence of the macro-scale variable is510

given through the tensor F (0)
p , which describes the plastic-like distortions.511

Moreover, if F (0)
p only depends on time, as is the case in [2], the cell problems512

are also decoupled in the spatial micro- and macro-variables provided that the513

elasticity tensor solely depends on the microscale variable. The cell problems514

are in any case time-dependent, as they encode the evolution of the material515

response and its link with the plastic-like distortions.516

Homogenized problem. From (36) and (42), the homogenized problem rewrites517 
DivX

[
ĈR : GradXu

(0)
]

= −DivX
[
D̂R

]
, in Bh × T ,

(ĈR : GradXu
(0)) ·N + D̂R ·N = T̄ , on ∂TBh × T ,

u(0) = ū, on ∂uBh × T ,

(46)

where518

ĈR =
〈
CR + CR : TGradY ξ − TGradY ξ(CR : E(0)

p )− I⊗(CR : E(0)
p )
〉
, (47a)

D̂R =
〈
CR : GradYω −GradYω(CR : E(0)

p )− CR : E(0)
p

〉
. (47b)

Remark 3. In the absence of distortions, that is for F ε
p = I, the cell prob-519

lems (43) and (45) reduce to one single cell problem,520 
DivY [C + C : TGradY ξ] = 0, in Y0 \ Γ0 × T ,
JξK = 0, on Γ0 × T ,
J(C + C : TGradY ξ) ·NYK = 0, on Γ0 × T .

(48)

This is due to the fact that the symmetric tensor E(0)
p appearing in (40) is521

equal to zero. On the other hand, the homogenized problem is rewritten as522

follows,523 
DivX [Ĉ : GradXu

(0)] = 0, in Bh × T ,
(Ĉ : GradXu

(0)) ·N = T̄ , on ∂TBh × T ,
u(0) = ū, on ∂uBh × T ,

(49)
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where Ĉ = 〈C + C : TGradY ξ〉 is the effective elasticity tensor. Formula-524

tions (48) and (49) are the counterparts of (24) and (25), respectively, when525

plastic-like distortions are neglected and a linearized approach for the defor-526

mations is considered. Particularly, (48) and (49) identify identically with527

classical results in the asymptotic homogenization literature [5, 77].528

5.2. Evolution law529

Several procedures can be adopted to establish a proper evolution law530

for the inelastic distortions. One choice is to follow a phenomenological531

approach, which should be based on experimental evidences and comply with532

suitable constitutive requirements [29]. On the other hand, one could invoke533

some general principles, such as the invariance of the evolution law with534

respect to a class of transformations and thermodynamic constraints [21, 22,535

23]. Within the latter approach, and adapting the theoretical framework536

explored in [21, 22, 23, 29], an evolution equation for the inelastic distortions537

has been studied in [19]. Therein, the plastic-like distortions describe a538

remodeling process with the following assumptions: (i) Fp is restricted by the539

constraint Jp = 1, (ii) the solid phase exhibits hyperelastic behavior, and (iii)540

the considered system remodels when the stress induced by external loading541

exceeds a characteristic threshold. An evolution law for Fp satisfying these542

conditions, and compatible with the Dissipation inequality [12, 32, 33, 34],543

is given by544

sym
(
CF−1p Ḟp

)
= γ

[
‖devσ‖ −

√
2
3
σy

]
+

dev(Σ)C

‖devσ‖
, (50)

where σ is the Cauchy stress tensor, dev(Σ) = Σ− 1
3
tr(Σ)I, is the deviatoric545

part of the Mandell stress tensor Σ = CS being the Mandel stress tensor,546

and S = F−1T the second Piola-Kirchhoff stress tensor. Moreover, γ is a547

strictly positive model parameter, σy > 0 is the yield, or threshold, stress,548

and the operator [A]+ is such that, for any real number A, [A]+ = A, if A > 0,549

and [A]+ = 0 otherwise. As anticipated in the Introduction, in the present550

context the physical meaning of the plastic-like distortions, represented by551

Fp, is that of structural reorganization, i.e. remodeling, as is the case in552

biological tissues when the adhesion bonds among cells or the structure of553

the ECM reorganize themselves.554

Although Equation (50) has been successfully used to describe some bi-555

ological situations in which the onset of remodeling is subordinated to the556
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excess of the yield stress σy, the homogenization of the evolution law (50) is557

too complicated. For this reason, in this work, we replace (50) with a much558

easier law of the type559

sym
(
C(Fp)−1Ḟp

)
= γ dev(Σ)C, (51)

according to which no stress-activation criterion is supplied. Clearly, this560

choice may turn out to be unrealistic in many circumstances, but it can561

still be useful to understand the essence of some stress-driven remodeling562

processes.563

We need to clarify that, although in some sentences of this work we564

mentioned growth, our model focuses on pure remodeling. This is reflected565

by the condition detF p = 1, and, more importantly, by the fact that the566

evolution laws (50) and (51) are triggered and controlled exclusively by me-567

chanical factors. On the one hand, the requirement detF p = 1 means that568

the plastic-like distortions are isochoric and, thus, unable to describe volu-569

metric growth. On the other hand, the evolution laws for F p, i.e., Eqs. (50)570

or (51), imply that remodeling is viewed as a consequence of the mechanical571

environment only: When mechanical stress exceeds a given threshold (see572

also [29, 34]), the internal structure of the tissue starts to vary. In other573

words, in the present framework, no biochemical phenomena are accounted574

for as possible activators of remodeling. This is a remarkable difference with575

growth, which, in contrast, occurs only when the concentration of nutrients576

is above a certain threshold value [2, 10, 3, 26, 52]. Our results do not apply577

to growth as they stand, nonetheless, the theory can be adapted to model578

growth by doing some necessary modifications. This is the reason why in579

the abstract we stated that our study offers “a robust framework that can be580

readily generalized to growth and remodeling of nonlinear composites”.581

To homogenize (51), the first step is to rewrite it as582

sym
(
Cε(F ε

p)−1Ḟ ε
p

)
= γεdev(Σε)Cε, (52)

by admitting that γε(X) = γ(X, Y ) is a rapidly oscillating strictly positive583

function. Moreover, by performing the power expansion for Σε,584

Σε(X, t) =
+∞∑
k=0

Σ(k)(X, Y, t)εk , (53)
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and using (31), the leading order term of Σε is585

Σ(0) = C(0)
[
CR : (E(0) −E(0)

p )
]
. (54)

In the limit of small elastic deformations, in (54) we must neglect non-linear586

terms in H . Therefore, Σ(0) is approximated with587

Σ
(0)
lin = CR : symH −

(
I + 2symH

)(
CR : E(0)

p

)
.

By virtue of (12a), symH splits additively as the sum of588

symH = E
(0)
X +E

(1)
Y , (55)

where, for k = 0, 1, and jk = X, Y ,589

E
(k)
jk

= 1
2

[
Gradjku

(k) + (Gradjku
(k))T

]
. (56)

By using (55) and (42), we can now rewrite Σ
(0)
lin as590

Σ
(0)
lin = AR : GradXu

(0) + BR : GradYω − CR : E(0)
p , (57)

with591

AR = CR + CR : TGradY ξ − I⊗(CR : E(0)
p )

+
[
I⊗(CR : E(0)

p )
]

:
[
TGradY ξ + t(TGradY ξ)

]
, (58a)

BR = CR + I⊗(CR : E(0)
p ). (58b)

In Equation (58a), the symbol t(•) transposes the fourth-order tensor to592

which it is applied by exchanging the order of its first pair of indices only,593

i.e., given an arbitrary fourth-order tensor T = TABCDeA ⊗ eB ⊗ eC ⊗ eD,594

tT reads595

tT = TBACDeA ⊗ eB ⊗ eC ⊗ eD. (59)

Note that in the calculations performed to obtain AR and BR in (57), we596

employed the following properties: given two second-order tensors A and U ,597

with A being symmetric, it holds that598

UA = (I⊗A) : U , (60a)

UTA = (I⊗A) : U . (60b)
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Finally, by substituting the expansions of Σε and F ε
p in (52), equating599

the leading order terms, excluding non-linear terms of H and averaging, the600

homogenized evolution law for the plastic-like distortions is601

sym
[
〈C(0)

lin (F (0)
p )−1

˙
F (0)

p 〉
]

= −
〈
γdev(Σ

(0)
lin )
〉
−
〈
γ(CR : E(0)

p )(C
(0)
lin − I)

〉
, (61)

where Σ
(0)
lin is given in (57) and602

C
(0)
lin = I + 2symH

= I + 2(I + I : TGradY ξ) : GradXu
(0) + 2I : GradYω. (62)

We note that, to compute C
(0)
lin , we must first determine ξ and ω, which is603

done by solving the local problems (43) and (45). Furthermore, Equation604

(61) needs to be supplemented with an initial condition for F (0)
p .605

Remark 4. In the linearized theory of elasticity, even when the individual606

constituents of a given composite material are isotropic, the effective elas-607

tic coefficients may turn out to be anisotropic, depending on the geometric608

properties of the micro-structure. In fact, when the Homogenization Theory609

is applied, the anisotropy arises quite naturally due to the solution of the610

local cell problems [5, 8]. In fact, the homogenized material is anisotropic611

also in the case of rather simple cells, see for instance [61], where an ex-612

plicit deviation-from- isotropy function is introduced in the context of cubic613

symmetric elasticity tensors arising from asympototic homogenization. This614

has noticeable repercussions also on the evolution law that should be chosen615

for a correct description of remodeling. To see this, we first notice that, for616

an isotropic medium, the evolution law of the plastic-like distortions can be617

formulated in terms of tensor Bp, since the constitutive framework is such618

that F p does not feature explicitly in any constitutive function (see e.g. [78]).619

In such cases, a possible evolution law for Bp may be given in the form620

Ḃp = γBpdev(Σ). (63)

Equation (63) is, in fact, in harmony with the symmetry properties of the621

material Mandel stress tensor, Σ, i.e., BpΣ = (BpΣ)T [54]. However, if622

one writes an equation of the same type as (63) at the scale of a cell problem623

(which seems to be a justified choice, because the material is isotropic at624

that scale), and then homogenizes, one ends up with a material for which625
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the Mandel stress tensor Σ no longer obeys the symmetry condition BpΣ =626

(BpΣ)T . This is because the material is not isotropic at the macroscale627

and, thus, the description of remodeling based on Bp becomes inadequate.628

Therefore, if one wants to homogenize, one should start with evolution laws629

at the microscale, which have to be suitable to account for anisotropy, even630

though the single constituents are isotropic at that scale. These considerations631

lead us to Equation (52), as suggested in [22, 23], and subsequently employed632

in [19].633

Remark 5. Equations (50) and (51) can be obtained by adhering to the634

philosophy presented in [12, 18], and subsequently adopted, for example, in [3]635

for growth, in [44] for growth and remodeling, and in [31, 32] for remodeling636

only. Accordingly, F p is regarded as the kinematic descriptor of the structural637

degrees of freedom of the medium, and Ḟ p as the generalized velocity with638

which the structural changes occur. Within this setting, it can be proven that639

for growth and remodeling problems, the dissipation inequality reads640

D = Y ν : Lp +Dnc ≥ 0, (64)

where Dmech := Y ν : Lp is the mechanical contribution to dissipation, with641

Y ν being the dissipative part of a generalized internal force, dual to Lp. In642

our work, however, Y ν can be identified with the tensor Y ν ≡ J−1p F−Tp ΣF T
p ,643

so that Dmech coincides with the mechanical dissipation encountered in the644

standard formulation of Elastoplasticity, i.e., Dmech = J−1p F−Tp ΣF T
p : Lp =645

J−1p Σ : F−1p Ḟ p.646

In the terminology of [45, 30], Dnc is referred to as “ non-compliant”647

contribution to the overall dissipation. Physically, it summarizes a class of648

phenomena that are not —or cannot be— resolved in terms of mechanical649

power at the scale at which the dissipation inequality is written. For instance,650

in the case of growth, Dnc may represent biochemical effects contributing to651

the overall dissipation.652

The inequality (64) can be studied in several ways, depending on the prob-653

lem at hand. First, we consider a growth problem. To this end, we assume654

that Dnc can be written as Dnc = rA, where r is the rate at which mass655

is added or depleted from the system (its units are given by the reciprocal656

of time), and A is the energy density (per unit volume) associated with the657

introduction or uptake of mass. In this setting, it is possible to conceive a658

particular state of the system in which the mechanical stress is null, i.e.,659

Σ = 0, while r and A are generally nonzero. When this occurs, the system660
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grows without mechanical dissipation, i.e., Dmech = 0, whereas the overall661

dissipation of the system reduces to the non-compliant one:662

D ≡ Dnc = rA ≥ 0. (65)

The second case addresses the situation of pure remodeling, for which we663

set Dnc = 0, so that the dissipation inequality (64) becomes664

D = Dmech = Y ν : Lp = J−1p Σ : F−1p Ḟ p ≥ 0. (66)

It is possible to show that the evolution laws (50) and (51) are in harmony665

with (66).666

6. A computational scheme for small deformations667

The macro-scale model given by the problems (46) and (61), together668

with the auxiliary cell problems (43) and (45), requires dedicated numerical669

schemes which are subject of our current investigations. The main compu-670

tational challenge is due to the fact that the local problems depend on the671

macro-scale in a time-dependent way. Therefore, at each time, there is a dif-672

ferent cell problem at each macroscopic point X ∈ Bh. Moreover, one has to673

transfer the information (represented by the geometry, material coefficients,674

and unknowns of the problem) from the cell problems to the homogenized675

problem in the domain Bh, and vice versa.676

Here, as a first step towards the numerical study of this kind of problems,677

we propose an algorithm adapted from [31] that could be useful in our case. In678

[31] it is introduced a computational algorithm, named Generalised Plasticity679

Algorithm (GPA), to study the mechanical response of a biological tissue680

that undergoes large deformations and remodeling of its internal structure.681

Following [31], the discrete and linearized version of the problem constituted682

by Equations (43), (45), (46) and (61) is formulated in three steps.683

First step. The weak form of the cell problems (43) and (45), and of the684

homogenized problem (46) can be formally rewritten as685

Lw1 (ξ,F (0)
p , ξ̃) = 0, (67a)

Lw2 (ω,F (0)
p , ω̃) = 0, (67b)

Hw
1 (u(0),F (0)

p , ũ(0)) = 0, (67c)
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where ξ̃, ω̃ and ũ(0) are test functions defined in certain Sobolev spaces, and686

Lw1 , Lw2 and Hw
1 are suitable integral operators. Together with (67a)-(67c),687

we rewrite in operatorial form also the homogenized problem (61) as688

H2(ξ,ω,u
(0),F (0)

p ) = 0. (68)

Note that (68) is not a weak form because the corresponding equation does689

not involved spatial derivatives of F (0)
p .690

Second step. We perform a backward Euler method [78] for discretizing the691

evolution law for F (0)
p given by (68), thereby ending up with the following692

system of time-discrete equations,693

Lw1[n](ξ[n],F
(0)
p[n], ξ̃) = 0, (69a)

Lw2[n](ω[n],F
(0)
p[n], ω̃) = 0, (69b)

Hw
1[n](u

(0)
[n] ,F

(0)
p[n], ũ

(0)) = 0, (69c)

H2[n](ξ[n],ω[n],u
(0)
[n] ,F

(0)
p[n]) = 0, (69d)

where n = 1, . . . , N enumerates the nodes of a suitable time grid. We notice694

that an explicit time discrete method could be also used. However, when695

dealing with problems in Elastoplasticity, this election could lead to a less696

accurate solution.697

Third step. The operators Lw1[n], Lw2[n], Hw
1[n] and H2[n], are linear in ξ[n], ω[n]698

and u
(0)
[n] , respectively, but they are nonlinear in F

(0)
p[n]. Thus, to search the699

solution to (69a)-(69d), we linearize at each time step according to Newton’s700

method (with a linesearch). Therefore, at the kth iteration, k ∈ N, k ≥ 1,701

F
(0)
p[n,k] is written as702

F
(0)
p[n,k] = F

(0)
p[n,k−1] + Ψ[n,k], (70)

where F
(0)
p[n,k−1] is known and Ψ[n,k] represents the unknown increment. We703

introduce the notation704

Lw1[n,k−1](ξ[n], ξ̃) = Lw1[n](ξ[n],F
(0)
p[n,k−1], ξ̃), (71a)

Lw2[n,k−1](ω[n], ω̃) = Lw2[n](ω[n],F
(0)
p[n,k−1], ω̃), (71b)

Hw
1[n,k−1](u

(0)
[n] , ũ

(0)
[n] ) = Hw

1[n](u
(0)
[n] ,F

(0)
p[n,k−1], ũ

(0)
[n] ). (71c)
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Now, for each time step, and at the kth iteration, we solve705

Lw1[n,k−1](ξ[n], ξ̃) = 0, (72a)

Lw2[n,k−1](ω[n], ω̃) = 0, (72b)

Hw
1[n,k−1](u

(0)
[n] , ũ

(0)) = 0, (72c)

and obtain the “temporary” solutions ξ[n,k−1], ω[n,k−1], and u
(0)
[n,k−1], respec-706

tively. Then, upon setting707

H2[n,k−1] = H2[n](ξ[n,k−1],ω[n,k−1],u
(0)
[n,k−1],F

(0)
p[n,k−1]), (73a)

H[n,k−1] = H[n](ξ[n,k−1],ω[n,k−1],u
(0)
[n,k−1],F

(0)
p[n,k−1]), (73b)

we linearize (69d), i.e.,708

H2[n,k−1] + H[n,k−1] : Ψ[n,k] = 0, (74)

where H[n,k−1] is a fourth-order tensor given by the Gâteaux derivative709

of H2[n], computed with respect to its fourth argument, and evaluated in710

F
(0)
p[n,k−1].711

If the residuum F
(0)
p[n,k] for k greater than, or equal to, a certain k∗ is less712

than a tolerance δ > 0, then we set F
(0)
p[n] ≡ F

(0)
p[n,k∗]

= F
(0)
p[n,k∗−1] + Ψ[n,k∗] and713

we regard it as the solution of Newton’s method. Thus, we compute ξ[n], ω[n]714

and u
(0)
[n] .715

These three steps are summarized in the algorithm 1.716

7. Numerical results717

In this section, the potentiality of our model, which is given by Equations718

(43), (45), (46) and (61), is shown by performing numerical simulations. In719

particular, we make the following considerations.720

(i) Geometry. We consider the composite body Bε to have a layered three-721

dimensional structure, and we assume that the layers are orthogonal to the722

direction E3, where {EA}3A=1 is an orthonormal basis of a system of Cartesian723

coordinates {XA}3A=1. In this particular case, the material properties of724

the heterogeneous body only change along the E3 direction and, thus, they725

depend solely on the coordinate X3. Consequently, the benchmark test at726
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Algorithm 1
1: procedure
2: for n = 1, . . . , N do
3: State k = 1
4: while e > δ do (Known F

(0)
p[n,k−1]

)

5: Solve Lw
1[n,k−1]

and Lw
2[n,k−1]

(To find ξ[n,k−1] and ω[n,k−1])

6: Solve Hw
1[n,k−1]

(To find u
(0)
[n,k−1]

)

7: Solve Hw
1[n,k−1]

(To find Ψ[n,k])

8: F
(0)
p[n,k−1]

← F
(0)
p[n,k−1]

+ Ψ[n,k]

9: Compute e
10: k = k + 1
11: end while
12: F

(0)
p[n]

= F
(0)
p[n,k−1]

+ Ψ[n,k]

13: Solve Lw
1[n]

and Lw
2[n]

(To find ξ[n] and ω[n])

14: Solve Hw
1[n]

(To find u
(0)
[n]

)

15: Update micro and macro geometries
16: end for
17: end procedure

hand can be recast into a one dimensional problem, that is, the reference727

configuration of the periodic cell and the body are considered to be the728

unidimensional domains Y0 = [0, `] and Bh = [0, L], respectively. We denote729

with ` and L, respectively, the dimension of the periodic cell and the body730

along the direction E3. Moreover, we suppose that the interface Γ0 is the731

middle point `/2, so that, each material under consideration has the same732

volume in the microscopic cell Y0.733

(ii) Material properties. We prescribe the elasticity tensor C ε to be in-734

dependent on the macroscale variable X3, i.e. C ε(X3) = C (X3, Y3) ≡ C (Y3),735

where {YA}3A=1 is a system of microscale Cartesian coordinates. In addition,736

as stated above, we consider that the constituents of the heterogeneous ma-737

terial are isotropic, which implies that the non zero components of the 6× 6738

symmetric matrix representation of C are given by739

[C ]11 = [C ]22 = [C ]33 = λ+ 2µ, (75a)

[C ]12 = [C ]13 = [C ]23 = λ, (75b)

[C ]44 = [C ]55 = [C ]66 = 1
2
([C ]11 − [C ]12) = µ, (75c)
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where λ and µ are Lamé’s parameters. We suppose that C is piece-wise740

constant, which means that λ and µ are defined as741

λ(Y3) =

{
λ1, in Y1

0

λ2, in Y2
0

and µ(Y3) =

{
µ1, in Y1

0

µ2, in Y2
0

. (76)

Furthermore, we consider that γ has the same value in both constituents,742

which means that it is already averaged.743

(iii) Plastic-like distortions. We assume that the matrix representa-744

tion of the tensor F (0)
p is diagonal with non-zero components [F (0)

p ]11 = 1√
p
,745

[F (0)
p ]22 = 1√

p
and [F (0)

p ]33 = p, where p is defined as the remodeling pa-746

rameter. Furthermore, we restrict our investigation to the simpler case of747

F (0)
p depending solely on X3. This means that, the plastic-like distortions of748

order ε0 are, in a sense, already averaged, and thus variable from one cell749

to the other, not inside them. In other words, we are interested in the pro-750

duction of distortions in the tissue starting from the cell scale, rather than751

from the cell’s microstructure. This, of course, does not mean that the cell’s752

microstructure does not change.753

Together the with assumption (ii), we find that the 6×6 matrix represen-754

tation of the elasticity tensor, pulled-backed to the reference configuration,755

is symmetric, and its non-zero components are given by756

[CR]11 = [CR]22 = (λ+ 2µ)p2, [CR]33 = (λ+ 2µ)p−4, (77a)

[CR]12 = λp2, [CR]44 = [CR]55 = µp−1, (77b)

[CR]13 = [CR]23 = λp−1, [CR]66 = µp2. (77c)

We remark that CR depends on X3 and time through p, whereas it inherits757

the dependence of C on the micro-scale variable, Y3.758

(iv) Initial and boundary conditions. In the present context, we im-759

pose Dirichlet conditions for u(0) on the whole boundary ∂Bh, i.e. we do not760

consider a Neumann condition and therefore, ∂uBh ≡ ∂Bh. We note that,761

although the homogenization process was developed for mixed boundary con-762

ditions, the whole procedure stands, since the type of boundary conditions763

does not play a role in the derivation of the homogenized model. In par-764

ticular, we set [u(0)]3 = 0 at X3 = 0, and [u(0)]3 = uLt
tf

at X3 = L, where765

uL is a target value for the displacement in the direction E3. Moreover,766
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we enforce an initial spatial distribution for the remodeling parameter p as767

p in(X3) = α + β cos( π
L
X3), where α and β are constants, such that pin(X3)768

is always strictly positive.769

7.1. Discussion of the numerical results770

Given the above considerations, we solve the following homogenized equa-771

tions for u(0) and p,772

− ∂

∂X3

([ĈR]i3n3
∂[u(0)]n
∂X3

) =
∂[D̂R]i3
∂X3

, for i = 1, 2, 3, (78a)

〈[C(0)
lin ]33〉

∂p

∂t
=
γ

3
〈dev(Σ

(0)
lin )〉p− γ〈[CR]33nn[Ep]nn([C

(0)
lin ]33 − 1)〉p, (78b)

The coefficients [ĈR]ijkl, [D̂R]ij and [C
(0)
lin ]ij are given by Equations (47a),773

(47b) and (62), respectively, and are to be found by solving the auxiliary cell774

problems for ξ and ω, given by775

− ∂

∂Y3
([Q]i3i3

∂[ξ]ik3
∂Y3

) =
∂[Q]i3i3
∂Y3

δik, for i, k = 1, 2, 3, (79a)

− ∂

∂Y3
([Q]i3i3

∂[ω]i
∂Y3

) = −∂[Q]33
∂Y3

δi3, for i = 1, 2, 3, (79b)

with776

[Q]i3i3 = [CR]i3i3 − [Q]33, [Q]33 = [CR]33nn[Ep]nn. (80a)

In this work, we are not interested to address a real world situation. Our777

aim is, instead, to show how the present theoretical framework can be numer-778

ically simulated. For this reason, the parameters used in our computations779

are arbitrarily chosen (see Table 1).780

In Fig. 2, it is plotted the time evolution of the remodeling parameter781

p at two different points of the macroscopic domain, that is at X3 = 7 cm782

and X3 = 21 cm. We observe that the evolution of p is quite different at783

these two points. Indeed, at X3 = 21 cm, p increases and it is always greater784

than one. On the contrary, at X3 = 7 cm, it is monotonically decreasing785

and tends to be lower than one. In Fig. 3, we show the spatial profile of the786

effective coefficients [Ĉ ]33, [ĈR]33 and [D̂R]33. The effective coefficient [Ĉ ]33787

(see Remark 3) can be computed by using the analytical formula (see e.g.788

[56, 69]),789
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Parameter Unit Value Parameter Unit Value

L [cm] 28.000 λ1 [Pa] 1.00
uL [cm] 1.0000 λ2 [Pa] 2.00
γ [1/s] 1.0000 µ1 [Pa] 0.10
α [−] 1.0035 µ2 [Pa] 0.06
β [−] −0.0035 t0 [s] 0.00
N [−] 4.0000 tf [s] 10.0

Table 1: Parameters used in the numerical simulations.

Figure 2: Evolution of the remodeling parameter p at two different points (X3 = 7 cm and
X3 = 21 cm) of the macroscopic domain.

[Ĉ ]ijkl = 〈[C ]ijkl − [C ]ijp3([C ]p3s3)
−1[C ]s3kl〉

+ 〈[C ]ijp3([C ]p3s3)
−1〉〈([C ]s3t3)

−1〉−1〈([C ]t3m3)
−1[C ]m3kl〉. (81)

We observe that even if a loading ramp condition has been imposed on u(0)
790

at the border X3 = L, the effective coefficient [Ĉ ]33 does not vary on time.791

This is because, in contrast to the case in which the plastic-like distortions792

are accounted for, the cell and homogenized problems (cf. (48) and (49)) are793

decoupled. On the other hand, the pulled-back effective coefficients [ĈR]33794

and [D̂R]33, given by Equations (47a) and (47b), respectively, do change in795

time since their equations are coupled with an evolution one and, as it can796

be observed, they are strongly influenced by the initial distribution of p. In797

fact, at the spatial point X3 = 21 cm, that is, when p > 1, [ĈR]33 decreases798
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and [D̂R]33 increases with time. The contrary occurs at X3 = 7 cm, i.e. when799

p < 1.800

Figure 3: Spatial distribution of the effective coefficients [Ĉ ]33, [ĈR]33 and [D̂R]33 at
different time instants.

Additionally, in Fig. 4 it is illustrated the third component of the macro-801

scopic leading order term of the displacement uε at three different time802

instants. Particularly, we plot the numerical solution of the homogenized803

problems (46) and (49), represented with [u
(0)
R ]3 and [u(0)]3, respectively. We804

note that, as expected from our election of the boundary condition, the dis-805

placement component increases monotonically in time. However, we notice806

that the introduction of the plastic-like distortions has a direct impact on the807

displacement distribution in the interior macroscopic points. Specifically, in808

these points the displacement has a higher magnitude.809

Figure 4: Spatial distribution of the macroscopic leading order term of the displacement

with remodeling ([u
(0)
R ]3) and without remodeling ([u(0)]3).

The situation described in our numerical simulations, although simplified,810
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could be a good starting point in the study of the remodeling of biological811

tissues. For example, the geometrical properties of bone’s osteons permit to812

model them as layered composites (see e.g. [69]).813

8. Concluding remarks814

In the present work, we studied the dynamics of a heterogeneous material,815

constituted by two hyperlastic media with evolving micro-structure, by the816

application of the asymptotic homogenization technique. The evolution of817

the micro-structure of the composite media was characterized through the818

development of plastic-like distortions, which were described by means of the819

BKL decomposition.820

The asymptotic homogenization method was applied to a set of problems821

comprising a scale-dependent, quasi-static law of balance of linear momentum822

and an evolution law for the tensor of plastic-like distortions. After obtaining823

the local and homogenized problems, we rewrote them by considering the De824

Saint-Venant strain energy density within the limit of small deformations.825

Although the selection of the strain energy density was due to its simplicity,826

it is helpful for the description of remodeling processes undergoing small827

deformations. For instance, this could be the case for describing bone aging.828

Then, the theoretical setting developed in the present work is applicable829

(Elastoplasticity is actually quite appropriate to model the bone [73]). In830

such a case, appropriate constitutive laws describing the progression of the831

material properties should be found based on experimental literature (e.g.832

[35]). Nevertheless, for studying a larger range of problems, we need to select833

nonlinear constitutive laws and write the corresponding cell and homogenized834

problems.835

As a consequence of the introduction of the tensor of plastic distortions,836

two independent cell problems were inferred, which reduce to the classical cell837

problems encountered in the homogenization of linear problems in elastostat-838

ics. Moreover, we proposed an evolution equation for the inelastic distortions839

describing a remodeling process. Such evolution law models a stress-driven840

production of inelastic distortions, as the one that is often encountered in841

studies of inelastic processes constructed on the decomposition given by (5)842

[78]. The evolution law is suitable for the case of finite strain Elastoplastic-843

ity, and for the case of remodeling of biological tissues. Finally, we outlined844

a computational procedure in order to solve the up-scaled problems and we845

performed numerical simulations for a particular case of a layered composite846
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body. Besides, we assumed that the leading order term of the asymptotic847

expansion of the tensor of plastic distortions, F (0)
p , depends only on the848

macro-scale variable X. This consideration, however, might be relaxed by849

allowing F (0)
p to take into account the heterogeneities of the composite mate-850

rial through the microscopic spatial variable Y . The numerical results showed851

the influence of the plastic-like distortions on both the effective coefficients852

and the macroscopic leading order term of the displacement.853

As future work, we intend to deal with the resolution of a particular854

problem, like for instance the modeling of bones [49], tumor growth [67, 2,855

43, 52, 70, 71], or tissue aging [20]. A further step could be the study, with856

the aid of the Homogenization Theory, of the coupling between the results857

presented in this work and the fluid flow in a hydrated tissue, or in the case858

of wavy laminar structures.859
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[70] Ramı́rez-Torres, A., Rodŕıguez-Ramos, R., Merodio, J., Bravo-1063

Castillero, J., Guinovart-Dı́az, R., Alfonso, J. C. L. (2015). Action of1064

body forces in tumor growth. International Journal of Engineering Sci-1065

ence 89:18-34.1066
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