We present a numerical scheme for the identification of compact surrogate models of analog circuit blocks. The basic assumption is small signal operation, so that a local linearization can be applied around a given bias point, resulting in a bias-dependent linear state-space behavioral macromodel. The main novel contribution of this work is the ability to embed in the identification process a suitable set of constraints, that are able to guarantee the uniform stability of the model for any bias value within a prescribed design range.

A Framework for the Generation of Guaranteed Stable Small-Signal Bias-Dependent Behavioral Models / De Stefano, M.; Grivet-Talocia, S.; Bradde, T.; Zanco, A.. - ELETTRONICO. - (2018), pp. 142-145. ((Intervento presentato al convegno 2018 13th European Microwave Integrated Circuits Conference (EuMIC) tenutosi a Madrid, Spain nel September 23-28, 2018 [10.23919/EuMIC.2018.8539900].

A Framework for the Generation of Guaranteed Stable Small-Signal Bias-Dependent Behavioral Models

De Stefano, M.;Grivet-Talocia, S.;Bradde, T.;Zanco, A.
2018

Abstract

We present a numerical scheme for the identification of compact surrogate models of analog circuit blocks. The basic assumption is small signal operation, so that a local linearization can be applied around a given bias point, resulting in a bias-dependent linear state-space behavioral macromodel. The main novel contribution of this work is the ability to embed in the identification process a suitable set of constraints, that are able to guarantee the uniform stability of the model for any bias value within a prescribed design range.
978-2-87487-052-1
File in questo prodotto:
File Dimensione Formato  
cnf-2018-eumw-parametric-IEEE.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
cnf-2018-eumw-parametric.pdf

accesso aperto

Descrizione: Post-print Author version
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 964.16 kB
Formato Adobe PDF
964.16 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2720180
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo