In this paper we study and compare several approaches to detect floods and evidence for passability of roads by conventional means in Twitter. We focus on tweets containing both visual information (a picture shared by the user) and metadata, a combination of text and related extra information intrinsic to the Twitter API. This work has been done in the context of the MediaEval 2018 Multimedia Satellite Task.

Deep Learning Models for Passability Detection of Flooded Roads / Lopez-Fuentes, Laura; Farasin, Alessandro; Skinnemoen, Harald; Garza, Paolo. - ELETTRONICO. - Vol-2283:(2018). (Intervento presentato al convegno Working Notes Proceedings of the MediaEval 2018 Workshop, Sophia Antipolis, France, 29-31 October 2018 tenutosi a Sophia Antipolis, France. nel 29/10/2018 - 31/10/2018).

Deep Learning Models for Passability Detection of Flooded Roads

Alessandro Farasin;Paolo Garza
2018

Abstract

In this paper we study and compare several approaches to detect floods and evidence for passability of roads by conventional means in Twitter. We focus on tweets containing both visual information (a picture shared by the user) and metadata, a combination of text and related extra information intrinsic to the Twitter API. This work has been done in the context of the MediaEval 2018 Multimedia Satellite Task.
2018
File in questo prodotto:
File Dimensione Formato  
MediaEval_18_paper_48.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 795.09 kB
Formato Adobe PDF
795.09 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2719409
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo