Assessing the quality of an evolving knowledge base is a challenging task as it often requires to identify correct quality assessment procedures. Since data is often derived from autonomous, and increasingly large data sources, it is impractical to manually curate the data, and challenging to continuously and automatically assess their quality. In this paper, we explore two main areas of quality assessment related to evolving knowledge bases: (i) identification of completeness issues using knowledge base evolution analysis, and (ii) identification of consistency issues based on integrity constraints, such as minimum and maximum cardinality, and range constraints. For completeness analysis, we use data profiling information from consecutive knowledge base releases to estimate completeness measures that allow predicting quality issues. Then, we perform consistency checks to validate the results of the completeness analysis using integrity constraints and learning models. The approach has been tested both quantitatively and qualitatively by using a subset of datasets from both DBpedia and 3cixty knowledge bases. The performance of the approach is evaluated using precision, recall, and F1 score. From completeness analysis, we observe a 94% precision for the English DBpedia KB and 95% precision for the 3cixty Nice KB. We also assessed the performance of our consistency analysis by using five learning models over three sub-tasks, namely minimum cardinality, maximum cardinality, and range constraint. We observed that the best performing model in our experimental setup is the Random Forest, reaching an F1 score greater than 90% for minimum and maximum cardinality and 84% for range constraints.

Completeness and consistency analysis for evolving knowledge bases / Rashid, Mohammad; Rizzo, Giuseppe; Torchiano, Marco; Mihindukulasooriya, Nandana; Corcho, Oscar; García-Castro, Raúl. - In: JOURNAL OF WEB SEMANTICS. - ISSN 1570-8268. - STAMPA. - 54:(2019), pp. 48-71. [10.1016/j.websem.2018.11.004]

Completeness and consistency analysis for evolving knowledge bases

Rashid, Mohammad;Rizzo, Giuseppe;Torchiano, Marco;
2019

Abstract

Assessing the quality of an evolving knowledge base is a challenging task as it often requires to identify correct quality assessment procedures. Since data is often derived from autonomous, and increasingly large data sources, it is impractical to manually curate the data, and challenging to continuously and automatically assess their quality. In this paper, we explore two main areas of quality assessment related to evolving knowledge bases: (i) identification of completeness issues using knowledge base evolution analysis, and (ii) identification of consistency issues based on integrity constraints, such as minimum and maximum cardinality, and range constraints. For completeness analysis, we use data profiling information from consecutive knowledge base releases to estimate completeness measures that allow predicting quality issues. Then, we perform consistency checks to validate the results of the completeness analysis using integrity constraints and learning models. The approach has been tested both quantitatively and qualitatively by using a subset of datasets from both DBpedia and 3cixty knowledge bases. The performance of the approach is evaluated using precision, recall, and F1 score. From completeness analysis, we observe a 94% precision for the English DBpedia KB and 95% precision for the 3cixty Nice KB. We also assessed the performance of our consistency analysis by using five learning models over three sub-tasks, namely minimum cardinality, maximum cardinality, and range constraint. We observed that the best performing model in our experimental setup is the Random Forest, reaching an F1 score greater than 90% for minimum and maximum cardinality and 84% for range constraints.
File in questo prodotto:
File Dimensione Formato  
JWS2018.pdf

Open Access dal 23/11/2020

Descrizione: JWS post print
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 598.29 kB
Formato Adobe PDF
598.29 kB Adobe PDF Visualizza/Apri
1-s2.0-S1570826818300623-main.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.04 MB
Formato Adobe PDF
2.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2718588
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo