The issue taken into account is the lifespan and potential toxicity of arthroprostheses with a focus on metal-polyethylene coupling. The gold standard for hip prostheses is a femoral component made of Ti6Al4V alloy, a head made of Co-Cr-Mo alloy and an insert made of UHMWPE while for knee prostheses the gold standard is a tibial component made of Co-Cr-Mo alloy, a femoral component made of Ti6Al4V and an insert made of UHMWPE. Open issues are wear of UHMWPE, toxicity of Co alloys and low fretting/wear resistance of Ti alloys. The aim of this research is to focus on the most biocompatible material (Ti6Al4V alloy) in order to improve its bio-tribological characteristics. A ceramic surface conversion by thermal treatment was used to obtain a borided coating on the titanium alloy surface in order to combine high hardness, good wettability and lubricant behavior of ceramics with good mechanical properties of Ti metal alloys. The coatings were characterized by means of optical microscope observation, FESEM analysis, XRD analysis, microindentation, scratch, friction and wear tests in order to identify the thermal treatment most suitable to obtain a coating with the required properties (thickness, hardness, roughness, wear resistance, friction coefficient and scratch resistance, surface lubrication ability in contact with human fluids) without significant modification of the microstructure of the substrate.

Boride Coating on Titanium Alloys as Biomaterial in Wear and Fretting Applications / Peretti, V.; Bari, A.; Ferraris, S.; Gautier, G.; Stella, B.; Tortora, A. M.; Spriano, S.. - ELETTRONICO. - (2019), pp. 719-731. (Intervento presentato al convegno 7th International Conference on Fracture Fatigue and Wear tenutosi a Ghent University, Belgium nel 9-10 July 2015) [10.1007/978-981-13-0411-8_64].

Boride Coating on Titanium Alloys as Biomaterial in Wear and Fretting Applications

V. Peretti;A. Bari;S. Ferraris;G. Gautier;S. Spriano
2019

Abstract

The issue taken into account is the lifespan and potential toxicity of arthroprostheses with a focus on metal-polyethylene coupling. The gold standard for hip prostheses is a femoral component made of Ti6Al4V alloy, a head made of Co-Cr-Mo alloy and an insert made of UHMWPE while for knee prostheses the gold standard is a tibial component made of Co-Cr-Mo alloy, a femoral component made of Ti6Al4V and an insert made of UHMWPE. Open issues are wear of UHMWPE, toxicity of Co alloys and low fretting/wear resistance of Ti alloys. The aim of this research is to focus on the most biocompatible material (Ti6Al4V alloy) in order to improve its bio-tribological characteristics. A ceramic surface conversion by thermal treatment was used to obtain a borided coating on the titanium alloy surface in order to combine high hardness, good wettability and lubricant behavior of ceramics with good mechanical properties of Ti metal alloys. The coatings were characterized by means of optical microscope observation, FESEM analysis, XRD analysis, microindentation, scratch, friction and wear tests in order to identify the thermal treatment most suitable to obtain a coating with the required properties (thickness, hardness, roughness, wear resistance, friction coefficient and scratch resistance, surface lubrication ability in contact with human fluids) without significant modification of the microstructure of the substrate.
File in questo prodotto:
File Dimensione Formato  
Peretti_TiAlloysWithBoridedCoatingAsWearResistanceBiomaterials-1.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 957.75 kB
Formato Adobe PDF
957.75 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2716045