We construct a family of frames describing the norm and seminorm of the space $H^s(\R^d)$. We also characterise Besov spaces modeled on $L^2(\R^d)$. Our work is inspired by the Discrete Orthonormal Stockwell Transform introduced by R.G. Stockwell, which provides a time-frequency localised version of the Fourier basis of $L^2([0,1])$. This approach is a hybrid between Gabor and Wavelet frames. We construct explicit and computable examples of these frames, discussing their properties and comparing them with the existing literature.

Stockwell-like frames for Sobolev spaces / Battisti, Ubertino; Berra, Michele; Tabacco, Anita Maria. - In: JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS. - ISSN 1662-9981. - STAMPA. - 9:4(2018), pp. 701-734. [10.1007/s11868-018-0259-7]

Stockwell-like frames for Sobolev spaces

Ubertino Battisti;Michele Berra;Anita Tabacco
2018

Abstract

We construct a family of frames describing the norm and seminorm of the space $H^s(\R^d)$. We also characterise Besov spaces modeled on $L^2(\R^d)$. Our work is inspired by the Discrete Orthonormal Stockwell Transform introduced by R.G. Stockwell, which provides a time-frequency localised version of the Fourier basis of $L^2([0,1])$. This approach is a hybrid between Gabor and Wavelet frames. We construct explicit and computable examples of these frames, discussing their properties and comparing them with the existing literature.
File in questo prodotto:
File Dimensione Formato  
battisti-berra-tabacco.pdf

Open Access dal 15/08/2019

Descrizione: Post-print
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 563.05 kB
Formato Adobe PDF
563.05 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2715261
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo