We construct a family of frames describing the norm and seminorm of the space $H^s(\R^d)$. We also characterise Besov spaces modeled on $L^2(\R^d)$. Our work is inspired by the Discrete Orthonormal Stockwell Transform introduced by R.G. Stockwell, which provides a time-frequency localised version of the Fourier basis of $L^2([0,1])$. This approach is a hybrid between Gabor and Wavelet frames. We construct explicit and computable examples of these frames, discussing their properties and comparing them with the existing literature.
Stockwell-like frames for Sobolev spaces / Battisti, Ubertino; Berra, Michele; Tabacco, Anita Maria. - In: JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS. - ISSN 1662-9981. - STAMPA. - 9:4(2018), pp. 701-734. [10.1007/s11868-018-0259-7]
Stockwell-like frames for Sobolev spaces
Ubertino Battisti;Michele Berra;Anita Tabacco
2018
Abstract
We construct a family of frames describing the norm and seminorm of the space $H^s(\R^d)$. We also characterise Besov spaces modeled on $L^2(\R^d)$. Our work is inspired by the Discrete Orthonormal Stockwell Transform introduced by R.G. Stockwell, which provides a time-frequency localised version of the Fourier basis of $L^2([0,1])$. This approach is a hybrid between Gabor and Wavelet frames. We construct explicit and computable examples of these frames, discussing their properties and comparing them with the existing literature.File | Dimensione | Formato | |
---|---|---|---|
battisti-berra-tabacco.pdf
Open Access dal 15/08/2019
Descrizione: Post-print
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
563.05 kB
Formato
Adobe PDF
|
563.05 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2715261
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo