Despite the widespread use, machine learning methods produce black box models. It is hard to understand how features influence the model prediction. We propose a novel explanation method that explains the predictions of any classifier by analyzing the prediction change obtained by omitting relevant subsets of attribute values. The local internal logic is captured by learning a local model in the neighborhood of the prediction to explain. The explanations provided by our method are effective in detecting associations among attributes and class label.
Deriving Local Internal Logic for Black Box Models / Pastor, Eliana. - ELETTRONICO. - 2161:(2018), pp. 1-4. (Intervento presentato al convegno SEBD 2018 26th Italian Symposium on Advanced Database Systems tenutosi a Castellaneta Marina (Italy) nel June 24-27, 2018).
Deriving Local Internal Logic for Black Box Models
PASTOR, ELIANA
2018
Abstract
Despite the widespread use, machine learning methods produce black box models. It is hard to understand how features influence the model prediction. We propose a novel explanation method that explains the predictions of any classifier by analyzing the prediction change obtained by omitting relevant subsets of attribute values. The local internal logic is captured by learning a local model in the neighborhood of the prediction to explain. The explanations provided by our method are effective in detecting associations among attributes and class label.File | Dimensione | Formato | |
---|---|---|---|
paper47.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
136.46 kB
Formato
Adobe PDF
|
136.46 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2712649
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo