Market demands for faster delivery and higher software quality are progressively becoming more stringent. A key hindrance for software companies to meet such demands is how to test the software due to to the intrinsic costs of development, maintenance and evolution of testware. Especially since testware should be defined, and aligned, with all layers of system under test (SUT), including all graphical user interface (GUI) abstraction levels. These levels can be tested with different generations of GUI-based test approaches, where 2nd generation, or Layout-based, tests leverage GUI properties and 3rd generation, or Visual, tests make use of image recognition. The two approaches provide different benefits and drawbacks and are seldom used together because of the aforementioned costs, despite growing academic evidence of the complementary benefits. In this work we propose the proof of concept of a novel two-step translation approach for Android GUI testing, where a translator first creates a technology independent script with actions and elements of the GUI, and then translates it to a script with the syntax chosen by the user. The approach enables users to translate Layout-based to Visual scripts and vice versa, to gain the benefits (e.g. robustness, speed and ability to emulate the user) of both generations, whilst minimizing the drawbacks (e.g. development and maintenance costs). We outline our approach from a technical perspective, discuss some of the key challenges with the realization of our approach, evaluate the feasibility and the advantages provided by our approach on an open-source Android application, and discuss the potential industrial impact of this work.

Towards Automated Translation between Generations of GUI-based Tests for Mobile Devices / Coppola, Riccardo; Torchiano, Marco; Ardito, Luca; Emil, Alegroth. - ELETTRONICO. - (2018), pp. 46-53. (Intervento presentato al convegno INTUITESTBEDS 2018 tenutosi a Amsterdam (Paesi Bassi) nel 19/07/2018) [10.1145/3236454.3236488].

Towards Automated Translation between Generations of GUI-based Tests for Mobile Devices

COPPOLA, RICCARDO;TORCHIANO, MARCO;ARDITO, LUCA;
2018

Abstract

Market demands for faster delivery and higher software quality are progressively becoming more stringent. A key hindrance for software companies to meet such demands is how to test the software due to to the intrinsic costs of development, maintenance and evolution of testware. Especially since testware should be defined, and aligned, with all layers of system under test (SUT), including all graphical user interface (GUI) abstraction levels. These levels can be tested with different generations of GUI-based test approaches, where 2nd generation, or Layout-based, tests leverage GUI properties and 3rd generation, or Visual, tests make use of image recognition. The two approaches provide different benefits and drawbacks and are seldom used together because of the aforementioned costs, despite growing academic evidence of the complementary benefits. In this work we propose the proof of concept of a novel two-step translation approach for Android GUI testing, where a translator first creates a technology independent script with actions and elements of the GUI, and then translates it to a script with the syntax chosen by the user. The approach enables users to translate Layout-based to Visual scripts and vice versa, to gain the benefits (e.g. robustness, speed and ability to emulate the user) of both generations, whilst minimizing the drawbacks (e.g. development and maintenance costs). We outline our approach from a technical perspective, discuss some of the key challenges with the realization of our approach, evaluate the feasibility and the advantages provided by our approach on an open-source Android application, and discuss the potential industrial impact of this work.
File in questo prodotto:
File Dimensione Formato  
INTUITESTBEDS_18_paper_2.pdf

accesso aperto

Descrizione: Articolo
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2712642
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo