This paper proposes a methodology for automatic, accurate and early detection of amplitude ionospheric scintillation events, based on machine learning algorithms, applied on big sets of 50 Hz post-correlation data provided by a GNSS receiver. Experimental results on real data show that this approach can considerably improve traditional methods, reaching a detection accuracy of 98%, very close to human-driven manual classification. Moreover, the detection responsiveness is enhanced, enabling early scintillation alerts.

Detection of GNSS Ionospheric Scintillations based on Machine Learning Decision Tree / Linty, Nicola; Farasin, Alessandro; Favenza, Alfredo; Dovis, Fabio. - In: IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS. - ISSN 0018-9251. - ELETTRONICO. - 55:1(2019), pp. 303-317. [10.1109/TAES.2018.2850385]

Detection of GNSS Ionospheric Scintillations based on Machine Learning Decision Tree

Linty, Nicola;Farasin, Alessandro;Dovis, Fabio
2019

Abstract

This paper proposes a methodology for automatic, accurate and early detection of amplitude ionospheric scintillation events, based on machine learning algorithms, applied on big sets of 50 Hz post-correlation data provided by a GNSS receiver. Experimental results on real data show that this approach can considerably improve traditional methods, reaching a detection accuracy of 98%, very close to human-driven manual classification. Moreover, the detection responsiveness is enhanced, enabling early scintillation alerts.
File in questo prodotto:
File Dimensione Formato  
08398529.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 5.05 MB
Formato Adobe PDF
5.05 MB Adobe PDF Visualizza/Apri
linty2018detection.pdf

accesso aperto

Descrizione: Scaricato da ieeexplore
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.89 MB
Formato Adobe PDF
3.89 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2712391
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo