This paper focuses on a preliminary study on the spectral analysis of linear time-varying circuits for the prediction of their stead-state and transient behavior. The proposed approach is based on the integral representation of the circuit equations in either the Fourier or Laplace domains. It provides the readers with an elegant and robust tool for the frequency-domain simulation of this class of circuits, enabling the direct inclusion of frequency-dependent elements. The feasibility and strength of the method are demonstrated on two illustrative examples consisting of a periodically linear time-varying parallel resonators and a simple time-varying circuit.
f-domain Analysis of Linear Circuits with Time-Varying Parameters via Integral Equations / Trinchero, Riccardo; Stievano, Igor S.. - ELETTRONICO. - (2018), pp. 1-5. (Intervento presentato al convegno 2018 IEEE International Symposium on Circuits and Systems (ISCAS) tenutosi a Florence (Italy) nel 27-30 May 2018) [10.1109/ISCAS.2018.8351024].
f-domain Analysis of Linear Circuits with Time-Varying Parameters via Integral Equations
Trinchero, Riccardo;Stievano, Igor S.
2018
Abstract
This paper focuses on a preliminary study on the spectral analysis of linear time-varying circuits for the prediction of their stead-state and transient behavior. The proposed approach is based on the integral representation of the circuit equations in either the Fourier or Laplace domains. It provides the readers with an elegant and robust tool for the frequency-domain simulation of this class of circuits, enabling the direct inclusion of frequency-dependent elements. The feasibility and strength of the method are demonstrated on two illustrative examples consisting of a periodically linear time-varying parallel resonators and a simple time-varying circuit.File | Dimensione | Formato | |
---|---|---|---|
cnf-2018-ISCAS-Spectral.pdf
accesso aperto
Descrizione: cnf-2018-ISCAS-Spectral
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
360.18 kB
Formato
Adobe PDF
|
360.18 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2712388
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo