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f -domain Analysis of Linear Circuits with
Time-Varying Parameters via Integral Equations

Riccardo Trinchero and Igor S. Stievano
EMC Group, Department of Electronics and Telecommunications, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy
E-mail: riccardo.trinchero@polito.it

Abstract—This paper focuses on a preliminary study on the
spectral analysis of linear time-varying circuits for the predic-
tion of their stead-state and transient behavior. The proposed
approach is based on the integral representation of the circuit
equations in either the Fourier or Laplace domains. It provides
the readers with an elegant and robust tool for the frequency-
domain simulation of this class of circuits, enabling the direct
inclusion of frequency-dependent elements. The feasibility and
strength of the method are demonstrated on two illustrative
examples consisting of a periodically linear time-varying parallel
resonators and a simple time-varying circuit.

Index Terms—Spectral analysis, transient analysis, linear time-
varying circuits, integral equations.

I. INTRODUCTION

In the past years, the importance of time-varying networks
is grown. A well known example is provided by the power
engineering domain and the switched mode power converters
which are massively used in almost any electrical and elec-
tronic equipment [1]. This class of circuits generates a possibly
complex dynamical behavior that must be properly predicted
during the early design phase [2]. The above need stimulated
a fruitful research activity focused on the development of
numerical techniques for the steady-state and transient solution
of circuits governed by coupled differential equations with
time-varying coefficients. To this aim a number of advanced
methods has been developed to provide a robust and accurate
simulation framework for the specific case of periodically
linear time varying (PLTV) circuits [3]–[11], with emphasis
on the steady-state response only.

For the general case of linear time-varying (LTV) cir-
cuits, a standard time-domain analysis is probably the most
effective solution. However, the inclusion in the simulation
framework of native frequency-dependent blocks such as lossy
transmission-lines and measured characteristics of multiport
elements (e.g., via admittance or scattering parameters) is trou-
blesome and unavoidably requires a non-negligible overhead
in recasting these blocks into time-domain circuit equivalents.

To overcome the above limitation, this paper focuses on a
different interpretation of the solution of a LTV network in
the spectral domain, via integral equations [12]. The proposed
solution provides a unified picture which holds for both
aperiodic and periodic time-varying circuits. What is more
important, operating in frequency domain allows accounting
for frequency-dependent multiport elements without any ad-
ditional effort. The mathematical framework is applied to the

analysis of two illustrative examples, namely a PLTV and a
LTV circuit.

II. ADOPTED FRAMEWORK FOR LTV NETWORKS

This Section briefly introduces two-well known tools for the
analysis of LTV networks along with their integral formulation
in the spectral domain.

A. Modified Nodal Analysis

The generic form of the modified nodal analysis (MNA) [13]
for a LTV circuit with n nodes and l current controlled
elements reads:

(m0(t) + ṁ1(t))w(t) + m1(t)ẇ(t) = j(t) (1)

where m0(t),m1(t) ∈ R(n−1+l)×(n−1+l) are matrices defin-
ing the time-varying parameters of the circuit, w(t) =
[v(t), i(t)]T ∈ R(n−1+l) is a column vector collecting the
(n − 1) nodal voltages and the currents flowing through the
l current controlled elements. Vector j(t) ∈ R(n−1+l) collects
the independent current and voltage sources.

The above relationship can be converted in the spectral
domain by applying the Laplace transform L(·) to both sides
of the equation, leading to the following coupled Fredholm
integral equation:

∫ σ+j∞

σ−j∞
[M0(s− s′) + sM1(s− s′)] W(s′)ds′ = J(s),

(2)

where s = σ + jω is the Laplace variable defined for σ > 0.

B. State Space Representation

The state space representation of a LTV network containing
d dynamical elements in time-domain reads:

ẋ(t) = A(t)x(t) + B(t)u(t) (3)

where A(t), B(t) ∈ Rd×d are time-varying matrices, and
x(t),u(t) ∈ Rd are column vectors defining the states and
the excitation of the circuit, respectively.

The s-domain formulation of (3) is given by the following
Fedholm integral equation:



sX(s) =

∫ σ+j∞

σ−j∞
A(s− s′)X(s′)ds′ +∫ σ+j∞

σ−j∞
B(s− s′)U(s′)ds′. (4)

III. EXAMPLE 1: PLTV CIRCUIT

This Section summarizes the results of the application of
the proposed spectral technique to the analysis of the simple
illustrative PLTV parallel resonator shown in Fig. 1. An MNA
based formulation is used to compute both the steady-state and
the transient behavior of the circuit.

j(t)
g(t) l(t) c(t)

v(t)

i(t)

Fig. 1. First illustrative example consisting of a PLTV resonator with
parameters g(t) = 1 + 0.5 sin(ωct) S, c(t) = 5 + 2.5 sin(ωct) mF and
l(t) = 5 + 2.5 sin(ωct) mH, and ωc/2π = 300 Hz.

The MNA matrices and vectors in (1) take the following
values:

w = [v(t), i(t)]T , j(t) = [j(t), 0]T (5)

and

m0(t) =

[
g(t) 1

1 0

]
, m1 =

[
c(t) 0
0 −l(t)

]
. (6)

Without loss of generality, the integral equation arising from
the first row of (5) and (6) reads:

∫ σ+j∞

σ−j∞
[G(s− s′) + sC(s− s′)]︸ ︷︷ ︸

K(s−s′)

V (s′)ds′ + I(s) = J(s).

(7)

A similar derivation holds for the second row (not included
for the sake of compactness).

A. Steady-State Analysis

Let’s start by considering the f -domain representation of
the periodic time-varying parameters of the circuit in terms of
their Fourier expansions, which reads, e.g., for c(t):

c(t) =

+∞∑
n=−∞

Cn exp(jnωct), ∀t ∈ (−∞,+∞) (8)

where ωc = 2πfc is the angular frequency related to the period
Tc = 1/fc and Cn are the coefficients of the Fourier series.
The above equation leads to the following Fourier transform:

C(ω) =

+∞∑
k=−∞

Ckδ(ω − kωc). (9)

According to [9], the steady-state responses of a generic
circuit variable such as the voltage v(t) to a quasi-periodic
excitation j(t) =

∑
p Jp exp(jωpt) containing a finite set of

harmonics S ∈ {ω−P , . . . , ωP } reads:

V (ω) =

+P∑
p=−P

+∞∑
n=−∞

V(p,n)δ(ω − nωc − ωp) (10)

where V(p,n) represents the n-th coefficient of the Fourier
expansion of v(t) for a single tone excitation of frequency
ωp ∈ S.

By substituting the Fourier transform of the circuit parame-
ters and the steady-state representation of the circuit variables
into the integral equation (7), we have:∑
n,k,p

[Gk + j((n+ k)ωc + ωp)Ck]V(p,n)δ(ω − (n+ k)ωc − ωp)

+ I(p,n)δ(ω − nωc − ωp) = Jpδ(ω − ωp) (11)

where s = jω. The previous equation is obtained by comput-
ing the integral in (7) as follows.∫ +∞

−∞

∑
n,k

Gkδ(ω − ω′ − kωc)V(p,n)δ(ω′ − nωc − ωp)dω′ =

=
∑
n,k

GkV(p,n)δ(ω − (n+ k)ωc + ωp). (12)

It is important to remark that (11) is exact since it is obtained
from the discrete kernel K(s − s′). However, its numerical
solution requires to approximate the spectra in (9) an (10)
with finite sums collecting the first (2N+1) harmonics of the
Fourier series for each excitation ωp, leading to the following
matrix approximation of (11),

(Σ + ΩΓ)X + Y = Θ (13)

where Σ, Ω, and Γ are complex circular matrices of dimension
(2N + 1) × (2N + 1) and, Ω = diag([−jNωc, . . . , jNωc]).
The unknown voltage and current variables are collected
into the vetctors X = [V(−N,p), . . . , V(N,p)]

T and Y =
[I(−N,p), . . . , I(N,p)]

T . The excitation vector is Θ =
[0, . . . , J(ωp), . . . , 0]T .

The above equation can be considered as an augmented
formulation of the MNA [10]-[11], for which the time-varying
elements are represented in the f -domain as multiport ele-
ments defined by suitable matrices accounting for the har-
monic coupling introduced by their time-varying activity.

It is important to notice that a similar procedure must
be applied to the second row of the MNA equation with
parameters defined by (5) and (6), leading to a matrix equation
similar to (13) but with a larger, i.e., double, dimension.

Once the discrete spectrum of the voltage V (ω) is computed
numerically, its the corresponding time-domain behavior can
be obtained via the following general relation [14]:

v(t) ≈
P∑

p=−P

+N∑
n=−N

Vn,p exp (jωpt) exp(jnωct), (14)



for any ωp ∈ S.

B. Transient simulation of PLTV circuits

The previous results can be generalized to the case of a
generic aperiodic excitation j(t) defined for t ∈ [0,+∞).
In this case, the periodic parameters of the circuit are repre-
sented in the Laplace domain. The resulting complex functions
G(s), C(s) and L(s) are meromorphic functions with an
infinite number of poles at pn = jnωc, which can be recast
in terms of their rational representations e.g., for c(t) writes,

C(s) = L{c(t)}(s) =

+∞∑
n=−∞

Cn
s− jnωc

. (15)

By substituting (15) in (7) and after some manipulations,
we derive:

∑
n

[Gn + s0Cn]V (s0 − jnωc) + I(s0) = J(s0). (16)

where s0 ∈ C is a generic point in the Laplace domain.
It is important to notice that also in this case, the spectral

relationship in (16) is exact, since the kernel of any PLTV
system turns out to be a meromorphic function yielding:

∫ σ+j∞

σ−j∞

∑
n

Gn
s− s′ − jnωc

V (s′)ds′ =
∑
n

GnV (s− jnωc).

(17)

In order to solve (16) numerically, the sum over n is
truncated to consider the first (2N + 1) harmonics of the
expansion. Also, s0 is replaced by a set of complex frequencies
S = {σ + jp2π∆f} for −P ≤ p ≤ P in which the terms
σ = 2 log(P )/Tw and ∆f = fmax/P are defined according
to the numerical inverse Laplace transform algorithm [14].

For any s0 ∈ S the above equation can be interpreted as
the linear system in (13) with the same Σ and Γ matrices,
whereas the diagonal matrix Ω = diag([s0 − jNωc, . . . , s0 +
jNωc]). The solution of the mentioned linear system provides
the current and voltage sampled spectra yielding the time-
domain responses of the circuit, e.g.,

v(t) ≈ ∆f

P∑
p=−P

+N∑
n=−N

Vn,p exp (spt) exp(jnωct). (18)

The proposed methodology is applied to the steady-state and
transient analysis of the current i(t) and voltage v(t) responses
to the sinusoidal excitation j(t) = sin(2π250t)u(t) A (see
Fig. 2). The curves in the figure show an excellent agree-
ment between the solution provided by the proposed spectral
approach and the result of the time-domain simulation of the
circuit in Matlab Simulink.
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Fig. 2. Current i(t) (top panel) and voltage vc(t) (bottom panel) responses
of the PLTV circuit of Fig. 1. The results of the proposed spectral approach
for the steady-state (dashed black, SS label) and transient (dashed red, tran.
label) analyses are compared with the results provided by the reference time-
domain simulation of the circuit (blue). The parameters P = 1 and N = 60
for the steady-state analysis and P = 180 and N = 120 for the transient
analysis, respectively.

IV. EXAMPLE 2: TIME-VARYING NETWORK

This section proposes a second application of the proposed
spectral approach to the solution of the LTV network of Fig. 3
based on the alternative state space representation. This simple
circuit consists of the interconnection of standard elements
and a time-varying conductance with the aperiodic behavior
g2(t) = g0[u(t− a)− u(t− a− b)].

e(t)
g1 g2(t)

C

0

g0

g2(t)

tba

v(t)

Fig. 3. Second example consisting of a simple LTV circuit with a time-
varying conductance g2(t). The circuit elements take the following values:
e(t) = u(t) V, g1 = g0 = 30 Ω, a = 1 s, b = 3 s and C = 0.1 F.

The voltage v(t) across the capacitor can be described by
means of (3) where A(t) = −(g1 + g2(t))/C and B(t) =
(g1 + g2(t))/C) are scalar coefficients. The above definition
leads to the following corresponding integral representation:



(sC + g1)V +

∫ σ+j∞

σ−j∞
G(s− s′)V (s′)ds′︸ ︷︷ ︸

I1

= Ẽ(s), (19)

where,

Ẽ(s) = GE(s) +

∫ σ+j∞

σ−j∞
G(s− s′)E(s′)ds′. (20)

Equation (19) is a Fredholm integral equation of the second
kind where the kernel G(s, s′) is defined as:

G(s− s′) = L{g(t)}(s− s′) =

=

{
g0 · (b− a) for s = s′,

g0 · exp (−a(s−s′))−exp (−b(s−s′))
(s−s′) otherwise.

(21)

Different from the previous example (which is a PLTV
circuit), the kernel K(s, s′) = G(s − s′) in (21) is an entire
function. The point s = s′ is a removable discontinuity and
there not exist a trivial closed-form solution of the integral I1
in (19). An approximation is however achieved by replacing
the integral with a finite sum defined over a set of complex
frequencies S = {σ + jn2π∆f}, −N ≤ n ≤ N , yielding:

∫ σ+j∞

σ−j∞
G(s− s′)V (s′)ds′ ≈ ∆f

+N∑
n=−N

G(s− sn)V (sn).

(22)

for any sn ∈ S.
By substituting (22) in (19) we have, for a given complex

frequency s0 ∈ S,

M(s0)V (s0) +

+N∑
k=−N

K(s0, sk)V (sk) = Ẽ(s0), (23)

where M(s) = (sC + g1) and K(s, sn) = ∆fG(s− sn).
Similar to the case of a PLTV circuit, the above equation

can be easily recast in terms of the linear problem:

(Σ + Γ)X = Θ, (24)

where X = [V (s−N ), . . . , V (sN )]T and Θ =
[Ẽ(s−N ), . . . , Ẽ(sN )]T are column vectors collecting
the sampled spectra of the voltage V (s) and of the excitation
Ẽ(s), respectively. Also, Σ = diag([M(s−N ), . . . ,M(sN )])
is a diagonal matrix and Γi,j = K(s(i−N−1), s(j−N−1)) is
a full-coupled circular matrix accounting for the harmonic
coupling introduced by the time-varying parameter.

Once the discrete samples of the voltage V (s) are computed
from the inversion of the linear system, the corresponding
transient response v(t) can be readily obtained via the standard
numerical inverse Laplace transform:

v(t) ≈
N∑

n=−N
Vp exp (snt), (25)

for any sn ∈ S.
Figure 4 collects the transient response of the voltage v(t) to

the excitation e(t) = u(t) V and its corresponding spectrum.
The curves obtained via the proposed spectral approach are
compared with the closed-form time-domain solution of the
first order example circuit. The results in the figure highlight
the capability of the proposed method to accurately predict
both the spectrum and the transient behavior of this class of
circuits.

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 4. Transient response of the voltage v(t) (top panel) of the LTV circuit of
Fig. 3 and its corresponding spectrum (bottom panel). The responses obtained
via the proposed spectral approach with N = 100 (dashed red curves) are
compared with the analytical solution of the circuit (blue curves).

V. CONCLUSIONS

This paper presented a preliminary study of the application
of a spectral technique for the steady-state and transient anal-
yses of linear time-varying circuits. The proposed approach is
based on an integral formulation derived from the governing
circuit equations in frequency-domain. The strength and the
accuracy of the methodology have been demonstrated on two
examples consisting of a parallel resonator with time-varying
periodical parameters and an aperiodic first order circuit.
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