ToPIC (Tuning of Parameters for Inference of Concepts) is a distributed self-tuning engine whose aim is to cluster collections of textual data into correlated groups of documents through a topic modeling methodology (i.e., LDA). ToPIC includes automatic strategies to relieve the end-user of the burden of selecting proper values for the overall analytics process. ToPIC's current implementation runs on Apache Spark, a state-of-the-art distributed computing framework. As a case study, ToPIC has been validated on three real collections of textual documents characterized by different distributions. The experimental results show the effectiveness and efficiency of the proposed solution in analyzing collections of documents without tuning algorithm parameters and in discovering cohesive and well-separated groups of documents with a similar topic.

Useful ToPIC: Self-tuning strategies to enhance Latent Dirichlet Allocation / Proto, Stefano; DI CORSO, Evelina; Ventura, Francesco; Cerquitelli, Tania. - ELETTRONICO. - (2018), pp. 33-40. (Intervento presentato al convegno BigData Congress 2018 tenutosi a San Francisco (USA) nel July 2-7, 2018).

Useful ToPIC: Self-tuning strategies to enhance Latent Dirichlet Allocation

PROTO, STEFANO;Evelina Di Corso;Francesco Ventura;Tania Cerquitelli
2018

Abstract

ToPIC (Tuning of Parameters for Inference of Concepts) is a distributed self-tuning engine whose aim is to cluster collections of textual data into correlated groups of documents through a topic modeling methodology (i.e., LDA). ToPIC includes automatic strategies to relieve the end-user of the burden of selecting proper values for the overall analytics process. ToPIC's current implementation runs on Apache Spark, a state-of-the-art distributed computing framework. As a case study, ToPIC has been validated on three real collections of textual documents characterized by different distributions. The experimental results show the effectiveness and efficiency of the proposed solution in analyzing collections of documents without tuning algorithm parameters and in discovering cohesive and well-separated groups of documents with a similar topic.
2018
978-1-5386-7232-7
File in questo prodotto:
File Dimensione Formato  
topic-tuning-strategies.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2710501
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo