In this work, we address the problem of providing fast and on-line households appliance load detection in a non-intrusive way from aggregate electric energy consumption data. Enabling on-line load detection is a relevant research problem as it can unlock new grid services such as demand-side management and raises interactivity in energy awareness possibly leading to more green behaviours. To this purpose, we propose an On-line-NILM (Non-Intrusive Load Monitoring) machine learning algorithm combining two methodologies: i) Unsupervised event-based profiling and ii) Markov chain appliance load modelling. The event-based part performs event detection through contiguous and transient data segments, events clustering and matching. The resulting features are used to build household-specific appliance models from generic appliance models. Disaggregation is then performed on-line using an Additive Factorial Hidden Markov Model from the generated appliance model parameters. Our solution is implemented on the cloud and tested with public benchmark datasets. Accuracy results are presented and compared with literature solutions, showing that the proposed solution achieves on-line detection with comparable detection performance with respect to non on-line approaches.

A Cloud-based On-line Disaggregation Algorithm for Home Appliance Loads / Mengistu, MILLION ABAYNEH; Abraha Girmay, Awet; Camarda, Chirstian; Acquaviva, Andrea; Patti, Edoardo. - In: IEEE TRANSACTIONS ON SMART GRID. - ISSN 1949-3053. - 10:3(2019), pp. 3430-3439. [10.1109/TSG.2018.2826844]

A Cloud-based On-line Disaggregation Algorithm for Home Appliance Loads

Million Abayneh Mengistu;Andrea Acquaviva;Edoardo Patti
2019

Abstract

In this work, we address the problem of providing fast and on-line households appliance load detection in a non-intrusive way from aggregate electric energy consumption data. Enabling on-line load detection is a relevant research problem as it can unlock new grid services such as demand-side management and raises interactivity in energy awareness possibly leading to more green behaviours. To this purpose, we propose an On-line-NILM (Non-Intrusive Load Monitoring) machine learning algorithm combining two methodologies: i) Unsupervised event-based profiling and ii) Markov chain appliance load modelling. The event-based part performs event detection through contiguous and transient data segments, events clustering and matching. The resulting features are used to build household-specific appliance models from generic appliance models. Disaggregation is then performed on-line using an Additive Factorial Hidden Markov Model from the generated appliance model parameters. Our solution is implemented on the cloud and tested with public benchmark datasets. Accuracy results are presented and compared with literature solutions, showing that the proposed solution achieves on-line detection with comparable detection performance with respect to non on-line approaches.
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 974.4 kB
Formato Adobe PDF
974.4 kB Adobe PDF Visualizza/Apri
08337762.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.09 MB
Formato Adobe PDF
2.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2706278
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo