While every matrix admits a singular value decomposition, in which the terms are pairwise orthogonal in a strong sense, higher-order tensors typically do not admit such an orthogonal decomposition. Those that do have attracted attention from theoretical computer science and scientific computing. We complement this existing body of literature with an algebro-geometric analysis of the set of orthogonally decomposable tensors. More specifically, we prove that they form a real-algebraic variety defined by polynomials of degree at most four. The exact degrees, and the corresponding polynomials, are different in each of three times two scenarios: ordinary, symmetric, or alternating tensors; and real-orthogonal versus complex-unitary. A key feature of our approach is a surprising connection between orthogonally decomposable tensors and semisimple algebras—associative in the ordinary and symmetric settings and of compact Lie type in the alternating setting.
Orthogonal and unitary tensor decomposition from an algebraic perspective / Boralevi, Ada; Draisma, Jan; Horobeţ, Emil; Robeva, Elina. - In: ISRAEL JOURNAL OF MATHEMATICS. - ISSN 0021-2172. - 222:1(2017), pp. 223-260. [10.1007/s11856-017-1588-6]
Titolo: | Orthogonal and unitary tensor decomposition from an algebraic perspective | |
Autori: | ||
Data di pubblicazione: | 2017 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s11856-017-1588-6 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
2-odeco.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2703658