Nowadays, the refined models of simulation to evaluate the seismic damage in an urban area are becoming of paramount interest for the scientific community. Regional seismic damage simulation can potentially provide valuable information that can facilitate decision making, enhance planning for disaster mitigation, and reduce human and economic losses. However, the application of refined models is limited because of their high computational cost and needs of highly experienced users. For these reasons, these approaches remain academic experiences. This study proposes a straightforward approach to the problem, at the same time competitive, to simulate the seismic response and to assess the degree of damage at urban scale. At first, the simulation of the standard building is performed using an equivalent single degree of freedom model. Subsequently, the same approach is extended to a number of regular buildings from a virtual city sample for time-history seismic response analysis. The first part of this work is devoted to present the methodology to prepare the one-degree-of-freedom model of the standard building by comparing it with a refined multi degrees of freedom model as a target. Finally, a seismic damage simulation of a virtual city sample is implemented to demonstrate the capacity and advantages of the proposed method at increasing seismic intensities for damage assessment. It is the starting phase for further multi-hazards analyses at the regional scale through agent-based models.

Exploring simulation tools for urban seismic analysis and resilience assessment / Cimellaro, Gp; Domaneschi, M; Mahin, S; Scutiero, G. - ELETTRONICO. - 1:(2017), pp. 2056-2074. (Intervento presentato al convegno 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, COMPDYN 2017 tenutosi a Rhodes Island; Greece nel 15 June 2017 through 17 June 2017).

Exploring simulation tools for urban seismic analysis and resilience assessment

Cimellaro GP;Domaneschi M;Scutiero G
2017

Abstract

Nowadays, the refined models of simulation to evaluate the seismic damage in an urban area are becoming of paramount interest for the scientific community. Regional seismic damage simulation can potentially provide valuable information that can facilitate decision making, enhance planning for disaster mitigation, and reduce human and economic losses. However, the application of refined models is limited because of their high computational cost and needs of highly experienced users. For these reasons, these approaches remain academic experiences. This study proposes a straightforward approach to the problem, at the same time competitive, to simulate the seismic response and to assess the degree of damage at urban scale. At first, the simulation of the standard building is performed using an equivalent single degree of freedom model. Subsequently, the same approach is extended to a number of regular buildings from a virtual city sample for time-history seismic response analysis. The first part of this work is devoted to present the methodology to prepare the one-degree-of-freedom model of the standard building by comparing it with a refined multi degrees of freedom model as a target. Finally, a seismic damage simulation of a virtual city sample is implemented to demonstrate the capacity and advantages of the proposed method at increasing seismic intensities for damage assessment. It is the starting phase for further multi-hazards analyses at the regional scale through agent-based models.
2017
978-618828441-8
File in questo prodotto:
File Dimensione Formato  
250416_Virtual_City_Polygonal_model_Compdyn2017.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2703456
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo