Technology scaling enables today the design of ultra-low cost wireless body sensor networks for wearable biomedical monitors. The typical behaviour of such systems consists of multi-channel input biosignals acquisition data compression and final output transmission or storage. To achieve minimal energy operation and extend battery life several aspects must be considered ranging from signal processing to architectural optimizations. The recently proposed Rakeness-based Compressed Sensing (CS) paradigm deploys the localization of input signal energy to further increase compression without sensible RSNR degradation. Such output size reduction allows for trading off energy from the compression stage to the transmission or storage stage. In this paper we analyze such tradeoffs considering a multi-core DSP for input biosignal computation and different technologies for either transmission or local storage. The experimental results show the effectiveness of the Rakeness approach (on average ≈ 44% more efficient than the baseline) and assess the energy gains in a technological perspective.
Rakeness-based compressed sensing on ultra-low power multi-core biomedicai processors / Bortolotti, Daniele; Mangia, Mauro; Bartolini, Andrea; Rovatti, Riccardo; Setti, Gianluca; Benini, Luca. - STAMPA. - 2015-:(2015), pp. 1-8. (Intervento presentato al convegno 2014 8th Conference on Design and Architectures for Signal and Image Processing, DASIP 2014 tenutosi a Spain nel 2014) [10.1109/DASIP.2014.7115599].
Rakeness-based compressed sensing on ultra-low power multi-core biomedicai processors
Setti Gianluca;
2015
Abstract
Technology scaling enables today the design of ultra-low cost wireless body sensor networks for wearable biomedical monitors. The typical behaviour of such systems consists of multi-channel input biosignals acquisition data compression and final output transmission or storage. To achieve minimal energy operation and extend battery life several aspects must be considered ranging from signal processing to architectural optimizations. The recently proposed Rakeness-based Compressed Sensing (CS) paradigm deploys the localization of input signal energy to further increase compression without sensible RSNR degradation. Such output size reduction allows for trading off energy from the compression stage to the transmission or storage stage. In this paper we analyze such tradeoffs considering a multi-core DSP for input biosignal computation and different technologies for either transmission or local storage. The experimental results show the effectiveness of the Rakeness approach (on average ≈ 44% more efficient than the baseline) and assess the energy gains in a technological perspective.File | Dimensione | Formato | |
---|---|---|---|
Setti-Rakeness-based.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2696721
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo