Named Data Networking (NDN) is an innovative paradigm to provide content based services in future networks. As compared to legacy networks, naming of network packets and in-network caching of content make NDN more feasible for content dissemination. However, the implementation of NDN requires drastic changes to the existing network infrastructure. One feasible approach is to use Software Defined Networking (SDN), according to which the control of the network is delegated to a centralized controller, which configures the forwarding data plane. This approach leads to large signaling overhead as well as large end-to-end (e2e) delays. In order to overcome these issues, we propose to enable NDN using a stateful data plane in the SDN network. In particular, we realize the functionality of an NDN node using a stateful SDN switch attached with a local cache for content storage, and use OpenState to implement such an approach. In our solution, no involvement of the controller is required once the OpenState switch has been configured. We benchmark the performance of our solution against the traditional SDN approach considering several relevant metrics. Experimental results highlight the benefits of a stateful approach and of our implementation, which avoids signaling overhead and significantly reduces e2e delays.
Efficient Caching through Stateful SDN in Named Data Networking / Mahmood, A.; Casetti, C.; Chiasserini, C.; Giaccone, P.; Harri, J.. - In: TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES. - ISSN 2161-3915. - STAMPA. - 29:1(2018). [10.1002/ett.3271]
Efficient Caching through Stateful SDN in Named Data Networking
Mahmood, A.;Casetti, C.;Chiasserini, C.;Giaccone, P.;
2018
Abstract
Named Data Networking (NDN) is an innovative paradigm to provide content based services in future networks. As compared to legacy networks, naming of network packets and in-network caching of content make NDN more feasible for content dissemination. However, the implementation of NDN requires drastic changes to the existing network infrastructure. One feasible approach is to use Software Defined Networking (SDN), according to which the control of the network is delegated to a centralized controller, which configures the forwarding data plane. This approach leads to large signaling overhead as well as large end-to-end (e2e) delays. In order to overcome these issues, we propose to enable NDN using a stateful data plane in the SDN network. In particular, we realize the functionality of an NDN node using a stateful SDN switch attached with a local cache for content storage, and use OpenState to implement such an approach. In our solution, no involvement of the controller is required once the OpenState switch has been configured. We benchmark the performance of our solution against the traditional SDN approach considering several relevant metrics. Experimental results highlight the benefits of a stateful approach and of our implementation, which avoids signaling overhead and significantly reduces e2e delays.File | Dimensione | Formato | |
---|---|---|---|
ETT_PostPrint-non-editor.pdf
Open Access dal 01/12/2018
Descrizione: Articolo principale
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
4.44 MB
Formato
Adobe PDF
|
4.44 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2691328
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo