We consider the asymptotic behaviour of integral energies with convex integrands defined on one-dimensional networks contained in a region of the three-dimensional space with a fast-oscillating boundary as the period of the oscillation tends to zero, keeping the oscillation themselves of fixed size. The limit energy, obtained as a $Gamma$-limit with respect to an appropriate convergence, is defined in a `stratified' Sobolev space and is written as an integral functional depending on all, two or just one derivative, depending on the connectedness properties of the sublevels of the function describing the profile of the oscillations. In the three cases, the energy function is characterized through an usual homogenization formula for $p$-connected networks, a homogenization formula for thin-film networks and a homogenization formula for thin-rod networks, respectively
Homogenization of networks in domains with oscillating boundaries / Braides, Andrea; Chiado' Piat, Valeria. - In: APPLICABLE ANALYSIS. - ISSN 0003-6811. - STAMPA. - 98:1-2(2019), pp. 45-63. [10.1080/00036811.2018.1430782]
Titolo: | Homogenization of networks in domains with oscillating boundaries | |
Autori: | ||
Data di pubblicazione: | 2019 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1080/00036811.2018.1430782 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
BCPZ.pdf | 1. Preprint / submitted version [pre- review] | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri | |
Homogenization of networks in domains with oscillating boundaries.pdf | articolo principale | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2687249