This paper outlines a method based on the theory of artificial potential fields combined with sliding mode techniques for spacecraft maneuvers in the presence of obstacles. Guidance and control algorithms are validated with a six degree-of-freed (dof) omorbital simulator. The idea of this paper is to provide computationally efficient algorithms for real time applications, in which the combination of Artificial potential field (APF) and sliding mode control shows the ability of plan trajectories, even in the presence of external disturbances and model uncertainties. A reduced frequency of the proposed controllers and a pulse width modulation (PWM) of the thrusters are considered to verify the performance of the system. The computational performance of APF as a guidance algorithm is discussed and the algorithms are verified by simulations of a complete rendezvous maneuver. The proposed algorithm appears suitable for the autonomous, real-time control of complex maneuvers with a minimum on-board computational effort.

Obstacle Avoidance with Potential Field Applied to a Rendezvous Maneuver / Bloise, Nicoletta; Capello, Elisa; Dentis, Matteo; Punta, Elisabetta. - In: APPLIED SCIENCES. - ISSN 2076-3417. - ELETTRONICO. - (2017). [10.3390/app7101042]

Obstacle Avoidance with Potential Field Applied to a Rendezvous Maneuver

BLOISE, NICOLETTA;CAPELLO, ELISA;DENTIS, MATTEO;
2017

Abstract

This paper outlines a method based on the theory of artificial potential fields combined with sliding mode techniques for spacecraft maneuvers in the presence of obstacles. Guidance and control algorithms are validated with a six degree-of-freed (dof) omorbital simulator. The idea of this paper is to provide computationally efficient algorithms for real time applications, in which the combination of Artificial potential field (APF) and sliding mode control shows the ability of plan trajectories, even in the presence of external disturbances and model uncertainties. A reduced frequency of the proposed controllers and a pulse width modulation (PWM) of the thrusters are considered to verify the performance of the system. The computational performance of APF as a guidance algorithm is discussed and the algorithms are verified by simulations of a complete rendezvous maneuver. The proposed algorithm appears suitable for the autonomous, real-time control of complex maneuvers with a minimum on-board computational effort.
2017
File in questo prodotto:
File Dimensione Formato  
Obstacle Avoidance with Potential Field Applied to a Rendezvous Maneuver.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2685937
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo