Nowadays, injection rate shaping and multi-pilot events can help to improve fuel efficiency, combustion noise and pollutant emissions in diesel engine, providing high flexibility in the shape of the injection that allows combustion process control. Different strategies can be used in order to obtain the required flexibility in the rate, such as very close pilot injections with almost zero Dwell Time or boot shaped injections with optional pilot injections. Modern Common-Rail Fuel Injection Systems (FIS) should be able to provide these innovative patterns to control the combustion phases intensity for optimal tradeoff between fuel consumption and emission levels.In this work, a 1D-CFD model in GT-SUITE of a solenoid ballistic Common-Rail injector was firstly refined respect to the previous work [1] and then it was validated against an extensive experimental dataset of single injections, standard double pilot and multi-pilot injection patterns (up to 4 pilot events) with almost zero dwell time between two consecutive injection events. The experimental hydraulic test data used to validate the one-dimensional model were obtained by means of the UniPG Injection Analyzer based on the Zeuch’s method.The comparison between the experimental and simulated volumetric injection rates showed a more than satisfactory accuracy of the model in predicting the actual behavior of the ballistic injector for all the injection patterns tested, even for relatively complex injector command strategies, characterized by reduced Dwell Time values between consecutive injection events.

Experimental and Numerical Assessment of Multi-Event Injection Strategies in a Solenoid Common-Rail Injector / Piano, Andrea; Boccardo, Giulio; Millo, Federico; Cavicchi, Andrea; Postrioti, Lucio; Pesce, Francesco Concetto. - In: SAE INTERNATIONAL JOURNAL OF ENGINES. - ISSN 1946-3944. - STAMPA. - 10:4(2017), pp. 2129-2140. [10.4271/2017-24-0012]

Experimental and Numerical Assessment of Multi-Event Injection Strategies in a Solenoid Common-Rail Injector

PIANO, ANDREA;BOCCARDO, GIULIO;MILLO, Federico;
2017

Abstract

Nowadays, injection rate shaping and multi-pilot events can help to improve fuel efficiency, combustion noise and pollutant emissions in diesel engine, providing high flexibility in the shape of the injection that allows combustion process control. Different strategies can be used in order to obtain the required flexibility in the rate, such as very close pilot injections with almost zero Dwell Time or boot shaped injections with optional pilot injections. Modern Common-Rail Fuel Injection Systems (FIS) should be able to provide these innovative patterns to control the combustion phases intensity for optimal tradeoff between fuel consumption and emission levels.In this work, a 1D-CFD model in GT-SUITE of a solenoid ballistic Common-Rail injector was firstly refined respect to the previous work [1] and then it was validated against an extensive experimental dataset of single injections, standard double pilot and multi-pilot injection patterns (up to 4 pilot events) with almost zero dwell time between two consecutive injection events. The experimental hydraulic test data used to validate the one-dimensional model were obtained by means of the UniPG Injection Analyzer based on the Zeuch’s method.The comparison between the experimental and simulated volumetric injection rates showed a more than satisfactory accuracy of the model in predicting the actual behavior of the ballistic injector for all the injection patterns tested, even for relatively complex injector command strategies, characterized by reduced Dwell Time values between consecutive injection events.
File in questo prodotto:
File Dimensione Formato  
2017-24-0012.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 4.79 MB
Formato Adobe PDF
4.79 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2683492
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo