SRAM-Based FPGAs represent a low-cost alternative to ASIC device thanks to their high performance and design flexibility. In particular, for aerospace and avionics application fields, SRAM-based FPGAs are increasingly adopted for their configurability features making them a viable solution for long-time applications. However, these fields are characterized by a radiation environment that makes the technology extremely sensitive to radiation-induced Single Event Upsets (SEUs) in the SRAM-based FPGA’s configuration memory. Configuration scrubbing and Triple Modular Redundancy (TMR) have been widely adopted in order to cope with SEU effects. However, modern FPGA devices are characterized by a heterogeneous routing resource distribution and a complex configuration memory mapping causing an increasing sensitivity to Cross Domain Errors affecting the TMR structure. In this paper we developed a new methodology to calculate the reliability of TMR architecture considering the intrinsic characteristics of the new generation of SRAM-based FPGAs. The method includes the analysis of the configuration bit sharing phenomena and of the routing long lines. We experimentally evaluate the method of various benchmark circuits evaluating the Mean Upset To Failure (MUTF). Finally, we used the results of the developed method to implement an improved design achieving 29x improvement of the MUTF.
Analysis of Radiation-induced Cross Domain Errors in TMR Architectures on SRAM-based FPGAs / Sterpone, Luca; Boragno, Luca. - ELETTRONICO. - (2017), pp. 174-179. (Intervento presentato al convegno International On-Line Testing and Robust System Design Symposium tenutosi a Thessaloniki nel July 3-5, 2017) [10.1109/IOLTS.2017.8046214].
Analysis of Radiation-induced Cross Domain Errors in TMR Architectures on SRAM-based FPGAs
STERPONE, LUCA;BORAGNO, LUCA
2017
Abstract
SRAM-Based FPGAs represent a low-cost alternative to ASIC device thanks to their high performance and design flexibility. In particular, for aerospace and avionics application fields, SRAM-based FPGAs are increasingly adopted for their configurability features making them a viable solution for long-time applications. However, these fields are characterized by a radiation environment that makes the technology extremely sensitive to radiation-induced Single Event Upsets (SEUs) in the SRAM-based FPGA’s configuration memory. Configuration scrubbing and Triple Modular Redundancy (TMR) have been widely adopted in order to cope with SEU effects. However, modern FPGA devices are characterized by a heterogeneous routing resource distribution and a complex configuration memory mapping causing an increasing sensitivity to Cross Domain Errors affecting the TMR structure. In this paper we developed a new methodology to calculate the reliability of TMR architecture considering the intrinsic characteristics of the new generation of SRAM-based FPGAs. The method includes the analysis of the configuration bit sharing phenomena and of the routing long lines. We experimentally evaluate the method of various benchmark circuits evaluating the Mean Upset To Failure (MUTF). Finally, we used the results of the developed method to implement an improved design achieving 29x improvement of the MUTF.File | Dimensione | Formato | |
---|---|---|---|
IOLTS_2017_cameraready.pdf
accesso aperto
Descrizione: Articolo Principale
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
904.19 kB
Formato
Adobe PDF
|
904.19 kB | Adobe PDF | Visualizza/Apri |
08046214.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
467.59 kB
Formato
Adobe PDF
|
467.59 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2680574
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo