Abstract. Given a rational homogeneous variety G/P where G is complex simple and of type ADE, we prove that the tangent bundle TG/P is simple, meaning that its only endomorphisms are scalar multiples of the identity. This result combined with Hitchin-Kobayashi correspondence implies stability of the tangent bundle with respect to the anticanonical polarization. Our main tool is the equivalence of categories between homogeneous vector bundles on G/P and finite dimensional representations of a given quiver with relations. Résumé. Soit G/P une variété homogène rationnelle, où G est un groupe de Lie simple, complexe et de type ADE. On démontre que le fibré tangent T_G/P est simple, c'est-à-dire, ses seuls endomorphismes sont les multiples scalaires de l'identité. Notre théorème, combiné avec la correspondance de Hitchin-Kobayashi, implique la stabilité du fibré tangent par rapport à la polarisation anticanonique. L'instrument principal qu'on utilise est l'équivalence des catégories des fibrés vectoriels homogènes sur G/P et des représentations de dimension finie d'un carquois avec relations introduit par Bondal et Kapranov in 1990.

Given a rational homogeneous variety G/P where G is complex simple and of type ADE, we prove that the tangent bundle _G/P is simple, meaning that its only endomorphisms are scalar multiples of the identity. This result combined with Hitchin-Kobayashi correspondence implies stability of the tangent bundle with respect to the anticanonical polarization. Our main tool is the equivalence of categories between homogeneous vector bundles on G/P and finite dimensional representations of a given quiver with relations.

On simplicity and stability of tangent bundles of rational homogeneous varieties / Boralevi, Ada. - 24-II:II(2012), pp. 273-295. (Intervento presentato al convegno Geometric Methods in Representation Theory tenutosi a Grenoble (FR) nel Giugno 2008).

On simplicity and stability of tangent bundles of rational homogeneous varieties

BORALEVI, ADA
2012

Abstract

Given a rational homogeneous variety G/P where G is complex simple and of type ADE, we prove that the tangent bundle _G/P is simple, meaning that its only endomorphisms are scalar multiples of the identity. This result combined with Hitchin-Kobayashi correspondence implies stability of the tangent bundle with respect to the anticanonical polarization. Our main tool is the equivalence of categories between homogeneous vector bundles on G/P and finite dimensional representations of a given quiver with relations.
2012
Abstract. Given a rational homogeneous variety G/P where G is complex simple and of type ADE, we prove that the tangent bundle TG/P is simple, meaning that its only endomorphisms are scalar multiples of the identity. This result combined with Hitchin-Kobayashi correspondence implies stability of the tangent bundle with respect to the anticanonical polarization. Our main tool is the equivalence of categories between homogeneous vector bundles on G/P and finite dimensional representations of a given quiver with relations. Résumé. Soit G/P une variété homogène rationnelle, où G est un groupe de Lie simple, complexe et de type ADE. On démontre que le fibré tangent T_G/P est simple, c'est-à-dire, ses seuls endomorphismes sont les multiples scalaires de l'identité. Notre théorème, combiné avec la correspondance de Hitchin-Kobayashi, implique la stabilité du fibré tangent par rapport à la polarisation anticanonique. L'instrument principal qu'on utilise est l'équivalence des catégories des fibrés vectoriels homogènes sur G/P et des représentations de dimension finie d'un carquois avec relations introduit par Bondal et Kapranov in 1990.
978-2-85629-361-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2674271
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo