he increasing demand for fast mobile data has driven transmission systems to use high order signal constellations. Conventional modulation schemes such as QAM and APSK are sub-optimal, large gains may be obtained by properly optimizing the constellation signals set under given channel constraints. The constellation optimization problem is computationally intensive and the known methods become rapidly unfeasible as the constellation order increases. Very few attempts to optimize constellations in excess of 64 signals have been reported. In this paper, we apply a simulated annealing (SA) algorithm to maximize the Mutual Information (MI) and Pragmatic Mutual Information (PMI), given the channel constraints. We first propose a GPU accelerated method for calculating MI and PMI of a constellation. For AWGN channels the method grants one order of magnitude speedup over a CPU realization. We also propose a parallelization of the Gaussian-Hermite Quadrature to compute the Average Mutual Information (AMI) and the Pragmatic Average Mutual Information (PAMI) on GPUs. Considering the more complex problem of constellation optimization over phase noise channels, we obtain two orders of magnitude speedup over CPUs. In order to reach such performance, novel parallel algorithms have been devised. Using our method, constellations with thousands of signals can be optimized
Parallel Methods for Optimizing High Order Constellations on GPUs / Spallaccini, Paolo; Kayhan, Farbod; Chinnici, Stefano; Montorsi, Guido. - (2015), pp. 1014-1023. (Intervento presentato al convegno 29th IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2015 tenutosi a ind nel 2015) [10.1109/IPDPSW.2015.48].
Parallel Methods for Optimizing High Order Constellations on GPUs
KAYHAN, FARBOD;MONTORSI, Guido
2015
Abstract
he increasing demand for fast mobile data has driven transmission systems to use high order signal constellations. Conventional modulation schemes such as QAM and APSK are sub-optimal, large gains may be obtained by properly optimizing the constellation signals set under given channel constraints. The constellation optimization problem is computationally intensive and the known methods become rapidly unfeasible as the constellation order increases. Very few attempts to optimize constellations in excess of 64 signals have been reported. In this paper, we apply a simulated annealing (SA) algorithm to maximize the Mutual Information (MI) and Pragmatic Mutual Information (PMI), given the channel constraints. We first propose a GPU accelerated method for calculating MI and PMI of a constellation. For AWGN channels the method grants one order of magnitude speedup over a CPU realization. We also propose a parallelization of the Gaussian-Hermite Quadrature to compute the Average Mutual Information (AMI) and the Pragmatic Average Mutual Information (PAMI) on GPUs. Considering the more complex problem of constellation optimization over phase noise channels, we obtain two orders of magnitude speedup over CPUs. In order to reach such performance, novel parallel algorithms have been devised. Using our method, constellations with thousands of signals can be optimizedPubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2673673
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo