Direct deposition of graphene on substrates would avoid costly, time consuming and defect inducing transfer techniques. In this paper we used ultrathin films of Ni, with thickness ranging from 5 to 50 nm, as a catalytic surface on glass to seed and promote chemical vapor deposition (CVD) of graphene. Different regimes and dynamics were studied for various parameters including temperature and reaction time. When a critical temperature (700 °C) was reached, Ni films retracted and holes formed that are open to the glass surface, where graphene deposited. After CVD, the residual Ni could be etched away and the glass substrate with graphene regained maximum transparency (>90%). The fact that we could achieve low growth temperatures indicates the potential of the technique to widen the range of substrate materials over which graphene can be directly deposited. We demonstrated this by depositing graphene patterns on ultrathin, 100 μm thick, sheet of glass with low strain point (670 °C), particularly suitable for flexible electronic and optoelectronic devices.
http://hdl.handle.net/11583/2673097
Titolo: | Low temperature direct growth of graphene patterns on flexible glass substrates catalysed by a sacrificial ultrathin Ni film |
Autori: | |
Data di pubblicazione: | 2016 |
Rivista: | |
Abstract: | Direct deposition of graphene on substrates would avoid costly, time consuming and defect inducing transfer techniques. In this paper we used ultrathin films of Ni, with thickness ranging from 5 to 50 nm, as a catalytic surface on glass to seed and promote chemical vapor deposition (CVD) of graphene. Different regimes and dynamics were studied for various parameters including temperature and reaction time. When a critical temperature (700 °C) was reached, Ni films retracted and holes formed that are open to the glass surface, where graphene deposited. After CVD, the residual Ni could be etched away and the glass substrate with graphene regained maximum transparency (>90%). The fact that we could achieve low growth temperatures indicates the potential of the technique to widen the range of substrate materials over which graphene can be directly deposited. We demonstrated this by depositing graphene patterns on ultrathin, 100 μm thick, sheet of glass with low strain point (670 °C), particularly suitable for flexible electronic and optoelectronic devices. |
Digital Object Identifier (DOI): | 10.1364/OME.6.002487 |
Appare nelle tipologie: | 1.1 Articolo in rivista |