Quantitative methodologies have been proposed to support decision making in drug development and monitoring. In particular, multicriteria decision analysis (MCDA) and stochastic multicriteria acceptability analysis (SMAA) are useful tools to assess the benefit–risk ratio of medicines according to the performances of the treatments on several criteria, accounting for the preferences of the decision makers regarding the relative importance of these criteria. However, even in its probabilistic form, MCDA requires the exact elicitations of the weights of the criteria by the decision makers, which may be difficult to achieve in practice. SMAA allows for more flexibility and can be used with unknown or partially known preferences, but it is less popular due to its increased complexity and the high degree of uncertainty in its results. In this paper, we propose a simple model as a generalization of MCDA and SMAA, by applying a Dirichlet distribution to the weights of the criteria and by making its parameters vary. This unique model permits to fit both MCDA and SMAA, and allows for a more extended exploration of the benefit–risk assessment of treatments. The precision of its results depends on the precision parameter of the Dirichlet distribution, which could be naturally interpreted as the strength of confidence of the decision makers in their elicitation of preferences.

A simple way to unify multicriteria decision analysis (MCDA) and stochastic multicriteria acceptability analysis (SMAA) using a Dirichlet distribution in benefit–risk assessment / SAINT-HILARY, Gaelle; Cadour, Stephanie; Robert, Veronique; Gasparini, Mauro. - In: BIOMETRICAL JOURNAL. - ISSN 0323-3847. - 59:3(2017), pp. 567-578. [10.1002/bimj.201600113]

A simple way to unify multicriteria decision analysis (MCDA) and stochastic multicriteria acceptability analysis (SMAA) using a Dirichlet distribution in benefit–risk assessment

SAINT-HILARY, GAELLE;GASPARINI, Mauro
2017

Abstract

Quantitative methodologies have been proposed to support decision making in drug development and monitoring. In particular, multicriteria decision analysis (MCDA) and stochastic multicriteria acceptability analysis (SMAA) are useful tools to assess the benefit–risk ratio of medicines according to the performances of the treatments on several criteria, accounting for the preferences of the decision makers regarding the relative importance of these criteria. However, even in its probabilistic form, MCDA requires the exact elicitations of the weights of the criteria by the decision makers, which may be difficult to achieve in practice. SMAA allows for more flexibility and can be used with unknown or partially known preferences, but it is less popular due to its increased complexity and the high degree of uncertainty in its results. In this paper, we propose a simple model as a generalization of MCDA and SMAA, by applying a Dirichlet distribution to the weights of the criteria and by making its parameters vary. This unique model permits to fit both MCDA and SMAA, and allows for a more extended exploration of the benefit–risk assessment of treatments. The precision of its results depends on the precision parameter of the Dirichlet distribution, which could be naturally interpreted as the strength of confidence of the decision makers in their elicitation of preferences.
File in questo prodotto:
File Dimensione Formato  
bimj1753.pdf

non disponibili

Descrizione: postprint
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2672654
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo