In this paper, a new discrete statistical model for ordered categorical data is proposed via fixed-point discretization of a beta latent variable. The resulting discretized beta distribution has a highly flexible shape and it can be either over-dispersed or under-dispersed with respect to the binomial distribution. It has only two parameters, which may therefore parsimoniously depend on covariates and on random effects, providing new tools for the analysis of structured, clustered or longitudinal ordinal data. Practical examples and advices are given and an application of the new model to subjective evaluations of a gastrointestinal disease is shown.

A new parsimonious model for ordinal longitudinal data with application to subjective evaluations of a gastrointestinal disease / Ursino, Moreno; Gasparini, Mauro. - In: STATISTICAL METHODS IN MEDICAL RESEARCH. - ISSN 0962-2802. - 27:5(2018), pp. 1376-1393. [10.1177/0962280216661370]

A new parsimonious model for ordinal longitudinal data with application to subjective evaluations of a gastrointestinal disease

URSINO, MORENO;GASPARINI, Mauro
2018

Abstract

In this paper, a new discrete statistical model for ordered categorical data is proposed via fixed-point discretization of a beta latent variable. The resulting discretized beta distribution has a highly flexible shape and it can be either over-dispersed or under-dispersed with respect to the binomial distribution. It has only two parameters, which may therefore parsimoniously depend on covariates and on random effects, providing new tools for the analysis of structured, clustered or longitudinal ordinal data. Practical examples and advices are given and an application of the new model to subjective evaluations of a gastrointestinal disease is shown.
File in questo prodotto:
File Dimensione Formato  
seconda_rev_paper.pdf

accesso aperto

Descrizione: preprint definitivo
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 8.35 MB
Formato Adobe PDF
8.35 MB Adobe PDF Visualizza/Apri
2618156.pdf

non disponibili

Descrizione: articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 6.92 MB
Formato Adobe PDF
6.92 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2672653
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo