Smart Systems represent a broad class of intelligent, miniaturized devices incorporating functionality like sensing, actuation, and control. In order to support these functions, they must include sophisticated and heterogeneous components, such as sensors and actuators, multiple power sources and storage devices, digital signal processing, and wireless connectivity. The high degree of heterogeneity typical of smart systems has a heavy impact on their design: the challenges are not in fact restricted to their functionality, but are also related to a number of extra-functional properties, including power consumption, temperature and aging. Current simulation- or model-based design approaches do not target a smart system as a whole, but rather single domains (digital, analog, power devices, etc.) or properties. This paper tries to overcome this limitation by proposing a framework for the concurrent simulation of both functionality and such extra-functional properties. The latter are modeled as different information flows, managed by dedicated “virtual buses” and formalized through the adoption of IPXACT. SystemC, through the support of physical and continuous time modeling provided by its Analog and Mixed Signal (AMS) extension, is used to implement both functional and extrafunctional models. Experimental results show the efficiency, accuracy and modularity of the proposed approach on an example case study, in which substantial speedups with respect to standard model-based design tools go along with a very high degree of accuracy (< 10−5%). Furthermore, the case study highlights that the proposed framework allows to easily capture at run time the mutual impact of properties, e.g., in case of power and temperature.
A Layered Methodology for the Simulation of Extra-Functional Properties in Smart Systems / Vinco, Sara; Chen, Yukai; Fummi, Franco; Macii, Enrico; Poncino, Massimo. - In: IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. - ISSN 0278-0070. - ELETTRONICO. - 36:10(2017), pp. 1702-1715. [10.1109/TCAD.2017.2650980]
A Layered Methodology for the Simulation of Extra-Functional Properties in Smart Systems
VINCO, SARA;CHEN, YUKAI;FUMMI, FRANCO;MACII, Enrico;PONCINO, MASSIMO
2017
Abstract
Smart Systems represent a broad class of intelligent, miniaturized devices incorporating functionality like sensing, actuation, and control. In order to support these functions, they must include sophisticated and heterogeneous components, such as sensors and actuators, multiple power sources and storage devices, digital signal processing, and wireless connectivity. The high degree of heterogeneity typical of smart systems has a heavy impact on their design: the challenges are not in fact restricted to their functionality, but are also related to a number of extra-functional properties, including power consumption, temperature and aging. Current simulation- or model-based design approaches do not target a smart system as a whole, but rather single domains (digital, analog, power devices, etc.) or properties. This paper tries to overcome this limitation by proposing a framework for the concurrent simulation of both functionality and such extra-functional properties. The latter are modeled as different information flows, managed by dedicated “virtual buses” and formalized through the adoption of IPXACT. SystemC, through the support of physical and continuous time modeling provided by its Analog and Mixed Signal (AMS) extension, is used to implement both functional and extrafunctional models. Experimental results show the efficiency, accuracy and modularity of the proposed approach on an example case study, in which substantial speedups with respect to standard model-based design tools go along with a very high degree of accuracy (< 10−5%). Furthermore, the case study highlights that the proposed framework allows to easily capture at run time the mutual impact of properties, e.g., in case of power and temperature.| File | Dimensione | Formato | |
|---|---|---|---|
| 07812663.pdf accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										3.66 MB
									 
										Formato
										Adobe PDF
									 | 3.66 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
| main.pdf accesso aperto 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										1.82 MB
									 
										Formato
										Adobe PDF
									 | 1.82 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2669873
			
		
	
	
	
			      	