The Carrera Unified Formulation (CUF) was recently extended to deal with the geometric nonlinear analysis of solid cross-section and thin-walled metallic beams (Pagani and Carrera, 2017). The promising results provided enough confidence for exploring the capabilities of that methodology when dealing with large displacements and post-buckling response of composite laminated beams, which is the subject of the present work. Accordingly, by employing CUF, governing nonlinear equations of low- to higher-order beam theories for laminated beams are expressed in this paper as degenerated cases of the three-dimensional elasticity equilibrium via an appropriate index notation. In detail, although the provided equations are valid for any one-dimensional structural theory in a unified sense, layer-wise kinematics are employed in this paper through the use of Lagrange polynomial expansions of the primary mechanical variables. The principle of virtual work and a finite element approximation are used to formulate the governing equations in a total Lagrangian manner, whereas a Newton–Raphson linearization scheme along with a path-following method based on the arc-length constraint is employed to solve the geometrically nonlinear problem. Several numerical assessments are proposed, including post-buckling of symmetric cross-ply beams and large displacement analysis of asymmetric laminates under flexural and compression loadings.
Large-deflection and post-buckling analyses of laminated composite beams by Carrera Unified Formulation / Pagani, Alfonso; Carrera, Erasmo. - In: COMPOSITE STRUCTURES. - ISSN 0263-8223. - STAMPA. - 170:(2017), pp. 40-52. [10.1016/j.compstruct.2017.03.008]
Large-deflection and post-buckling analyses of laminated composite beams by Carrera Unified Formulation
PAGANI, ALFONSO;CARRERA, Erasmo
2017
Abstract
The Carrera Unified Formulation (CUF) was recently extended to deal with the geometric nonlinear analysis of solid cross-section and thin-walled metallic beams (Pagani and Carrera, 2017). The promising results provided enough confidence for exploring the capabilities of that methodology when dealing with large displacements and post-buckling response of composite laminated beams, which is the subject of the present work. Accordingly, by employing CUF, governing nonlinear equations of low- to higher-order beam theories for laminated beams are expressed in this paper as degenerated cases of the three-dimensional elasticity equilibrium via an appropriate index notation. In detail, although the provided equations are valid for any one-dimensional structural theory in a unified sense, layer-wise kinematics are employed in this paper through the use of Lagrange polynomial expansions of the primary mechanical variables. The principle of virtual work and a finite element approximation are used to formulate the governing equations in a total Lagrangian manner, whereas a Newton–Raphson linearization scheme along with a path-following method based on the arc-length constraint is employed to solve the geometrically nonlinear problem. Several numerical assessments are proposed, including post-buckling of symmetric cross-ply beams and large displacement analysis of asymmetric laminates under flexural and compression loadings.File | Dimensione | Formato | |
---|---|---|---|
GeomNonlinCompBeams.pdf
Open Access dal 03/03/2019
Descrizione: Articolo principale. Post-print.
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2668749
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo