A residual based a posteriori error estimate for the Poisson problem with discontinuous diffusivity coefficient is derived in the case of a Virtual Element discretization. The error is measured considering a suitable polynomial projection of the discrete solution to prove an equivalence between the defined error and a computable residual based error estimator that does not involve any term related to the Virtual Element stabilization. Numerical results display a very good behaviour of the ratio between the error and the error estimator, resulting independent of the meshsize and element distortion.
A Residual A Posteriori error estimate for the Virtual Element Method / Berrone, Stefano; Borio, Andrea. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - STAMPA. - 27:8(2017), pp. 1423-1458. [10.1142/S0218202517500233]
A Residual A Posteriori error estimate for the Virtual Element Method
BERRONE, Stefano;BORIO, ANDREA
2017
Abstract
A residual based a posteriori error estimate for the Poisson problem with discontinuous diffusivity coefficient is derived in the case of a Virtual Element discretization. The error is measured considering a suitable polynomial projection of the discrete solution to prove an equivalence between the defined error and a computable residual based error estimator that does not involve any term related to the Virtual Element stabilization. Numerical results display a very good behaviour of the ratio between the error and the error estimator, resulting independent of the meshsize and element distortion.File | Dimensione | Formato | |
---|---|---|---|
vem_apost.pdf
Open Access dal 07/06/2018
Descrizione: Articolo
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
724.44 kB
Formato
Adobe PDF
|
724.44 kB | Adobe PDF | Visualizza/Apri |
s0218202517500233 (1).pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
822 kB
Formato
Adobe PDF
|
822 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2666363
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo