In this work, we deal with a bivariate time series of wind speed and direction. Our observed data have peculiar features, such as informative missing values, non-reliable measures under a specific condition and interval-censored data, that we take into account in the model specification. We analyse the time series with a non-parametric Bayesian hidden Markov model, introducing a new emission distribution, suitable to model our data, based on the invariant wrapped Poisson, the Poisson and the hurdle density. The model is estimated on simulated datasets and on the real data example that motivated this work.

Hidden Markov model for discrete circular–linear wind data time series / Mastrantonio, Gianluca; Calise, Gianfranco. - In: JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION. - ISSN 0094-9655. - 86:13(2016), pp. 2611-2624. [10.1080/00949655.2016.1142544]

Hidden Markov model for discrete circular–linear wind data time series

MASTRANTONIO, GIANLUCA;
2016

Abstract

In this work, we deal with a bivariate time series of wind speed and direction. Our observed data have peculiar features, such as informative missing values, non-reliable measures under a specific condition and interval-censored data, that we take into account in the model specification. We analyse the time series with a non-parametric Bayesian hidden Markov model, introducing a new emission distribution, suitable to model our data, based on the invariant wrapped Poisson, the Poisson and the hurdle density. The model is estimated on simulated datasets and on the real data example that motivated this work.
File in questo prodotto:
File Dimensione Formato  
2016-Hidden Markov model for discrete circular–linear wind data time series.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 463.86 kB
Formato Adobe PDF
463.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
SubAn.pdf

Open Access dal 04/02/2017

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 376.73 kB
Formato Adobe PDF
376.73 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2664912