We discuss several issues concerning the application of the Virtual Element Method (VEM) to the flow in fractured media modeled by the Discrete Fracture Network (DFN) model. Due to the stochastic nature of the computational domains, several geometrical complexities make the computations very challenging. The geometrical flexibility provided by the Virtual Element Method can be exploited to mutually couple local problems, either by resorting to a Mortar approach, or by allowing for the global conformity of the local meshes, while keeping the computational cost under control. We describe these two approaches in detail and we test them on a realistic test case, showing the viability of the two approaches.

The virtual element method for Discrete Fracture Network flow and transport simulations / Benedetto, MATIAS FERNANDO; Berrone, Stefano; Borio, Andrea; Pieraccini, Sandra; Scialo', Stefano. - STAMPA. - 2:(2016), pp. 2953-2970. ((Intervento presentato al convegno 7th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS Congress 2016 tenutosi a Grecia nel 2016 [10.7712/100016.2008.6334].

The virtual element method for Discrete Fracture Network flow and transport simulations

BENEDETTO, MATIAS FERNANDO;BERRONE, Stefano;BORIO, ANDREA;PIERACCINI, SANDRA;SCIALO', STEFANO
2016

Abstract

We discuss several issues concerning the application of the Virtual Element Method (VEM) to the flow in fractured media modeled by the Discrete Fracture Network (DFN) model. Due to the stochastic nature of the computational domains, several geometrical complexities make the computations very challenging. The geometrical flexibility provided by the Virtual Element Method can be exploited to mutually couple local problems, either by resorting to a Mortar approach, or by allowing for the global conformity of the local meshes, while keeping the computational cost under control. We describe these two approaches in detail and we test them on a realistic test case, showing the viability of the two approaches.
9786188284401
File in questo prodotto:
File Dimensione Formato  
ARTicle.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 526.89 kB
Formato Adobe PDF
526.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2658665
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo