This paper presents the formulation of the electromagnetic problem constituted of coupled angular and planar regions by using the generalized Wiener-Hopf technique. The paper introduce also the technique to obtain a solution of the problem by reducing the factorization problem to Fredholm integral equation. The test case of a PEC planar waveguide filled by a dielectric medium that opens to a PEC angular region is presented.

An introduction of the generalized Wiener-Hopf technique for coupled angular and planar regions / Daniele, Vito; Lombardi, Guido; Zich, Rodolfo. - ELETTRONICO. - (2016), pp. 166-168. (Intervento presentato al convegno 2016 URSI International Symposium on Electromagnetic Theory, EMTS 2016 tenutosi a Espoo, Finland nel 14 August 2016 through 18 August 2016) [10.1109/URSI-EMTS.2016.7571342].

An introduction of the generalized Wiener-Hopf technique for coupled angular and planar regions

DANIELE, Vito;LOMBARDI, Guido;ZICH, RODOLFO
2016

Abstract

This paper presents the formulation of the electromagnetic problem constituted of coupled angular and planar regions by using the generalized Wiener-Hopf technique. The paper introduce also the technique to obtain a solution of the problem by reducing the factorization problem to Fredholm integral equation. The test case of a PEC planar waveguide filled by a dielectric medium that opens to a PEC angular region is presented.
2016
9781509025022
9781509025022
File in questo prodotto:
File Dimensione Formato  
emts2016_K_dopo_revisione_PID4253725.pdf

accesso aperto

Descrizione: Author version
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 207.96 kB
Formato Adobe PDF
207.96 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2658250
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo