We study the conformal geometry of timelike curves in the (1+2)-Einstein universe, the conformal compactification of Minkowski 3-space defined as the quotient of the null cone of R2,3 by the action by positive scalar multiplications. The purpose is to describe local and global conformal invariants of timelike curves and to address the question of existence and properties of closed trajectories for the conformal strain functional. Some relations between the conformal geometry of timelike curves and the geometry of knots and links in the 3-sphere are discussed.

Conformal geometry of timelike curves in the (1+2)-Einstein universe / Dzhalilov, Akhtam; Musso, Emilio; Nicolodi, Lorenzo. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 143:(2016), pp. 224-255. [10.1016/j.na.2016.05.011]

Conformal geometry of timelike curves in the (1+2)-Einstein universe

MUSSO, EMILIO;
2016

Abstract

We study the conformal geometry of timelike curves in the (1+2)-Einstein universe, the conformal compactification of Minkowski 3-space defined as the quotient of the null cone of R2,3 by the action by positive scalar multiplications. The purpose is to describe local and global conformal invariants of timelike curves and to address the question of existence and properties of closed trajectories for the conformal strain functional. Some relations between the conformal geometry of timelike curves and the geometry of knots and links in the 3-sphere are discussed.
File in questo prodotto:
File Dimensione Formato  
ConfGeomTimeLikeArXiv2016.pdf

accesso aperto

Descrizione: preprint arXiv:1603.01035v1
Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 9.41 MB
Formato Adobe PDF
9.41 MB Adobe PDF Visualizza/Apri
Nonlinear Analysis.pdf

accesso riservato

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.41 MB
Formato Adobe PDF
2.41 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2646065
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo