We study the conformal geometry of timelike curves in the (1+2)-Einstein universe, the conformal compactification of Minkowski 3-space defined as the quotient of the null cone of R2,3 by the action by positive scalar multiplications. The purpose is to describe local and global conformal invariants of timelike curves and to address the question of existence and properties of closed trajectories for the conformal strain functional. Some relations between the conformal geometry of timelike curves and the geometry of knots and links in the 3-sphere are discussed.
Conformal geometry of timelike curves in the (1+2)-Einstein universe / Dzhalilov, Akhtam; Musso, Emilio; Nicolodi, Lorenzo. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 143:(2016), pp. 224-255. [10.1016/j.na.2016.05.011]
Conformal geometry of timelike curves in the (1+2)-Einstein universe
MUSSO, EMILIO;
2016
Abstract
We study the conformal geometry of timelike curves in the (1+2)-Einstein universe, the conformal compactification of Minkowski 3-space defined as the quotient of the null cone of R2,3 by the action by positive scalar multiplications. The purpose is to describe local and global conformal invariants of timelike curves and to address the question of existence and properties of closed trajectories for the conformal strain functional. Some relations between the conformal geometry of timelike curves and the geometry of knots and links in the 3-sphere are discussed.File | Dimensione | Formato | |
---|---|---|---|
ConfGeomTimeLikeArXiv2016.pdf
accesso aperto
Descrizione: preprint arXiv:1603.01035v1
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
9.41 MB
Formato
Adobe PDF
|
9.41 MB | Adobe PDF | Visualizza/Apri |
Nonlinear Analysis.pdf
accesso riservato
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.41 MB
Formato
Adobe PDF
|
2.41 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2646065
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo