NanoMagnet logic (NML) is among the emerging technologies that might replace CMOS in the next decades. According to its physical characteristics, to better exploit the potential of this technology-and of other similar ones--the use of parallel architectures with regular layout that avoid long interconnection signals is advised. Systolic arrays (SAs) are among these architectures, being composed of a grid of equal processing elements that are locally interconnected. However, they are usually implemented to execute only a small set of algorithms, and for this reason, throughout the years, they have not been an appealing solution for CMOS. To seriously analyze the potentials of NML, complex architectures must be conceived, and their physical implementation explored considering realistic technological constraints. With the increasing complexity of NML circuits, two issues, then, are noticed: 1) the need for a regular structure arises, that at the same time helps to reduce the intrinsic pipelining nature of NML and can be configured to be used for several applications without developing a dedicated design for each algorithm and 2) the capability to synthesize, place and route NML circuits is fundamental to demonstrate the feasibility of the architecture in two important conditions: efficiently managing the complexity of the design and sticking to the characteristics that are technologically feasible at the time of writing. In this paper, we address these issues presenting a new reconfigurable SA that can be programmed to execute different algorithms, and we provide two examples to show its working principle. Moreover, the array is synthesized and simulated with the aid of the first real tool for nanotechnology circuits that we have conceived, Torino Politecnico Nanotechnology tool. The joint contribution at both the architectural and physical design levels gives a relevant step forward to the state of the art in the demonstration of this emerging technology potential.
Reconfigurable Systolic Array: From Architecture to Physical Design for NML / Causapruno, Giovanni; Riente, Fabrizio; Turvani, Giovanna; Vacca, Marco; RUO ROCH, Massimo; Zamboni, Maurizio; Graziano, Mariagrazia. - In: IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. - ISSN 1063-8210. - ELETTRONICO. - 24:11(2016), pp. 3208-3217. [10.1109/TVLSI.2016.2547422]
Reconfigurable Systolic Array: From Architecture to Physical Design for NML
CAUSAPRUNO, GIOVANNI;RIENTE, FABRIZIO;TURVANI, GIOVANNA;VACCA, MARCO;RUO ROCH, Massimo;ZAMBONI, Maurizio;GRAZIANO, MARIAGRAZIA
2016
Abstract
NanoMagnet logic (NML) is among the emerging technologies that might replace CMOS in the next decades. According to its physical characteristics, to better exploit the potential of this technology-and of other similar ones--the use of parallel architectures with regular layout that avoid long interconnection signals is advised. Systolic arrays (SAs) are among these architectures, being composed of a grid of equal processing elements that are locally interconnected. However, they are usually implemented to execute only a small set of algorithms, and for this reason, throughout the years, they have not been an appealing solution for CMOS. To seriously analyze the potentials of NML, complex architectures must be conceived, and their physical implementation explored considering realistic technological constraints. With the increasing complexity of NML circuits, two issues, then, are noticed: 1) the need for a regular structure arises, that at the same time helps to reduce the intrinsic pipelining nature of NML and can be configured to be used for several applications without developing a dedicated design for each algorithm and 2) the capability to synthesize, place and route NML circuits is fundamental to demonstrate the feasibility of the architecture in two important conditions: efficiently managing the complexity of the design and sticking to the characteristics that are technologically feasible at the time of writing. In this paper, we address these issues presenting a new reconfigurable SA that can be programmed to execute different algorithms, and we provide two examples to show its working principle. Moreover, the array is synthesized and simulated with the aid of the first real tool for nanotechnology circuits that we have conceived, Torino Politecnico Nanotechnology tool. The joint contribution at both the architectural and physical design levels gives a relevant step forward to the state of the art in the demonstration of this emerging technology potential.File | Dimensione | Formato | |
---|---|---|---|
07454779.pdf
non disponibili
Descrizione: Articolo pubblicato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.82 MB
Formato
Adobe PDF
|
2.82 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
tvlsi_RSA.pdf
accesso aperto
Descrizione: Articolo reviewed
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2643338
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo