Recent technological advances enable us to collect huge amounts of data from multiple sources. jointly analyzing such multi-relational data from different sources, i.e., data fusion (also called multi-block, multi-view or multi-set data analysis), often enhances knowledge discovery. For instance, in metabolomics, biological fluids are measured using a variety of analytical techniques such as Liquid Chromatography-Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy. Data measured using different analytical methods may be complementary and their fusion may help in the identification of chemicals related, to certain diseases. Data fusion has proved useful in many fields including social network analysis, collaborative filtering, neuroscience and bioinformatics. In this paper, unlike many studies demonstrating the success of data fusion, we explore the limitations as well as the advantages of data fusion. We formulate data fusion as a coupled matrix and tensor factorization (CMTF) problem, which jointly factorizes multiple data sets in the form of higher-order tensors and matrices by extracting a common latent structure from the shared mode. Using numerical experiments on simulated and real data sets, we assess the performance of coupled analysis compared to the analysis of a single data set in terms of missing data estimation and demonstrate cases where coupled analysis outperforms analysis of a single data set and vice versa.
Understanding data fusion within the framework of coupled matrix and tensor factorizations / Acar, Evrim; Rasmussen, Morten Arendt; Savorani, Francesco; Næs, Tormod; Bro, Rasmus. - In: CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS. - ISSN 0169-7439. - STAMPA. - 129:(2013), pp. 53-63. [10.1016/j.chemolab.2013.06.006]
Understanding data fusion within the framework of coupled matrix and tensor factorizations
SAVORANI, FRANCESCO;
2013
Abstract
Recent technological advances enable us to collect huge amounts of data from multiple sources. jointly analyzing such multi-relational data from different sources, i.e., data fusion (also called multi-block, multi-view or multi-set data analysis), often enhances knowledge discovery. For instance, in metabolomics, biological fluids are measured using a variety of analytical techniques such as Liquid Chromatography-Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy. Data measured using different analytical methods may be complementary and their fusion may help in the identification of chemicals related, to certain diseases. Data fusion has proved useful in many fields including social network analysis, collaborative filtering, neuroscience and bioinformatics. In this paper, unlike many studies demonstrating the success of data fusion, we explore the limitations as well as the advantages of data fusion. We formulate data fusion as a coupled matrix and tensor factorization (CMTF) problem, which jointly factorizes multiple data sets in the form of higher-order tensors and matrices by extracting a common latent structure from the shared mode. Using numerical experiments on simulated and real data sets, we assess the performance of coupled analysis compared to the analysis of a single data set in terms of missing data estimation and demonstrate cases where coupled analysis outperforms analysis of a single data set and vice versa.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2628254
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo