The human presence close to streams and rivers is known to have consistently increased worldwide, therefore introducing dramatic anthropogenic and environmental changes. However, a spatiotemporal detailed analysis is missing to date. In this paper, we propose a novel method to quantify the temporal evolution and the spatial distribution of the anthropogenic presence along streams and rivers and in their immediate proximity at the global scale and at a high-spatial resolution (i.e., nearly 1 km at the equator). We use satellite images of nocturnal lights, available as yearly snapshots from 1992 to 2013, and identify five distinct distance classes from the river network position. Our results show a temporal enhancement of human presence across the considered distance classes. In particular, we observed a higher human concentration in the vicinity of the river network, even though the frequency distribution of human beings in space has not significantly changed in the last two decades. Our results prove that fine-scale remotely sensed data, as nightlights, may provide new perspectives in water science, improving our understanding of the human impact on water resources and water-related environments

Human-impacted waters: New perspectives from global high-resolution monitoring / Ceola, S.; Laio, Francesco; Montanari, A.. - In: WATER RESOURCES RESEARCH. - ISSN 0043-1397. - STAMPA. - 51:9(2015), pp. 7064-7079. [10.1002/2015WR017482]

Human-impacted waters: New perspectives from global high-resolution monitoring

LAIO, FRANCESCO;
2015

Abstract

The human presence close to streams and rivers is known to have consistently increased worldwide, therefore introducing dramatic anthropogenic and environmental changes. However, a spatiotemporal detailed analysis is missing to date. In this paper, we propose a novel method to quantify the temporal evolution and the spatial distribution of the anthropogenic presence along streams and rivers and in their immediate proximity at the global scale and at a high-spatial resolution (i.e., nearly 1 km at the equator). We use satellite images of nocturnal lights, available as yearly snapshots from 1992 to 2013, and identify five distinct distance classes from the river network position. Our results show a temporal enhancement of human presence across the considered distance classes. In particular, we observed a higher human concentration in the vicinity of the river network, even though the frequency distribution of human beings in space has not significantly changed in the last two decades. Our results prove that fine-scale remotely sensed data, as nightlights, may provide new perspectives in water science, improving our understanding of the human impact on water resources and water-related environments
File in questo prodotto:
File Dimensione Formato  
2015-Human-impacted watersWater_Resources_Research.pdf

Open Access dal 03/03/2016

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 3.6 MB
Formato Adobe PDF
3.6 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2626764
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo