We consider least energy solutions to the nonlinear equation -\Delta u=f(r,u) posed on a class of Riemannian models (M,g) of dimension n>= 2 which include the classical hyperbolic space H^n as well as manifolds with unbounded sectional geometry. Partial symmetry and existence of least energy solutions is proved for quite general nonlinearities f(r, u), where r denotes the geodesic distance from the pole of M.
Partial symmetry and existence of least energy solutions to some nonlinear elliptic equations on Riemannian models / Berchio, Elvise; Ferrero, Alberto; Vallarino, Maria. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - STAMPA. - 22:5(2015), pp. 1167-1193. [10.1007/s00030-015-0318-1]
Partial symmetry and existence of least energy solutions to some nonlinear elliptic equations on Riemannian models
BERCHIO, ELVISE;VALLARINO, MARIA
2015
Abstract
We consider least energy solutions to the nonlinear equation -\Delta u=f(r,u) posed on a class of Riemannian models (M,g) of dimension n>= 2 which include the classical hyperbolic space H^n as well as manifolds with unbounded sectional geometry. Partial symmetry and existence of least energy solutions is proved for quite general nonlinearities f(r, u), where r denotes the geodesic distance from the pole of M.File | Dimensione | Formato | |
---|---|---|---|
berchio-ferrero-vallarino.pdf
accesso aperto
Descrizione: articolo principale
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
373.19 kB
Formato
Adobe PDF
|
373.19 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2624938
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo