This paper is aimed at homogenization of an elliptic spectral problem stated in a perforated domain, Fourier boundary conditions being imposed on the boundary of perforation. The presence of a locally periodic coefficient in the boundary operator gives rise to the effect of localization of the eigenfunctions. Moreover, the limit behavior of the lower part of the spectrum can be described in terms of an auxiliary harmonic oscillator operator. We describe the asymptotics of the eigenpairs and derive estimates for the rate of convergence.

Localization effect for a spectral problem in a perforated domain with fourier boundary conditions / CHIADO' PIAT, Valeria; Pankratova, I.; Piatnitski, A.. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. - 45:3(2013), pp. 1302-1327. [10.1137/120868724]

Localization effect for a spectral problem in a perforated domain with fourier boundary conditions

CHIADO' PIAT, Valeria;
2013

Abstract

This paper is aimed at homogenization of an elliptic spectral problem stated in a perforated domain, Fourier boundary conditions being imposed on the boundary of perforation. The presence of a locally periodic coefficient in the boundary operator gives rise to the effect of localization of the eigenfunctions. Moreover, the limit behavior of the lower part of the spectrum can be described in terms of an auxiliary harmonic oscillator operator. We describe the asymptotics of the eigenpairs and derive estimates for the rate of convergence.
File in questo prodotto:
File Dimensione Formato  
37.2013 Localization effect.pdf

accesso aperto

Descrizione: 37 2013 Localization effect
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 332.26 kB
Formato Adobe PDF
332.26 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2624353
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo