We present a new class of iterative algorithms for sparse recovery problems that combine iterative support detection and estimation. More precisely, these methods use a two state Gaussian scale mixture as a proxy for the signal model and can be interpreted both as iteratively reweighted least squares (IRLS) and Expectation/Maximization (EM) algorithms for the constrained maximization of the log-likelihood function. Under certain conditions, these methods are proved to converge to a sparse solution and to be quadratically fast in a neighborhood of that sparse solution, outperforming classical IRLS for lp-minimization. Numerical experiments validate the theoretical derivations and show that these new reconstruction schemes outperform classical IRLS for lp-minimization with p\in(0,1] in terms of rate of convergence and sparsity-undersampling tradeoff.
Quadratically fast IRLS for sparse signal recovery / Ravazzi, Chiara; Magli, Enrico. - STAMPA. - (2015). (Intervento presentato al convegno Signal Processing with Adaptive Sparse Structured Representations tenutosi a Cambridge, UK nel July 6-9, 2015).
Quadratically fast IRLS for sparse signal recovery
RAVAZZI, CHIARA;MAGLI, ENRICO
2015
Abstract
We present a new class of iterative algorithms for sparse recovery problems that combine iterative support detection and estimation. More precisely, these methods use a two state Gaussian scale mixture as a proxy for the signal model and can be interpreted both as iteratively reweighted least squares (IRLS) and Expectation/Maximization (EM) algorithms for the constrained maximization of the log-likelihood function. Under certain conditions, these methods are proved to converge to a sparse solution and to be quadratically fast in a neighborhood of that sparse solution, outperforming classical IRLS for lp-minimization. Numerical experiments validate the theoretical derivations and show that these new reconstruction schemes outperform classical IRLS for lp-minimization with p\in(0,1] in terms of rate of convergence and sparsity-undersampling tradeoff.File | Dimensione | Formato | |
---|---|---|---|
SPARS_2015_abstract.pdf
accesso aperto
Descrizione: Abstract
Tipologia:
Abstract
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
268.86 kB
Formato
Adobe PDF
|
268.86 kB | Adobe PDF | Visualizza/Apri |
SPARS_poster.pdf
accesso aperto
Descrizione: Poster
Tipologia:
Altro materiale allegato
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
647.61 kB
Formato
Adobe PDF
|
647.61 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2623863
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo