Results of the project ‘ODALINE’ (OLED Devices Application in Luminaires for Interior and Exterior lighting) are presented. A team of academic and industrial partners worked together to design and manufacture a family of OLED luminaires. The project went through the following phases: i) analysis of the state-of-the-art of OLED technology; ii) identification of scenarios and application fields for OLED-based lighting systems and definition of requirements and performances expected for each scenario; iii) definition of the concept of new OLED lighting systems and development of their preliminary design; iv) executive design and manufacturing of some prototypes. After the identification of the most suitable OLED unit and of the application scenarios, the concept of the new luminaires was conceived: the luminaires rely on a suitable aggregation of a base module (consisting of an array of 6 OLED units, measuring 30 cm ∗ 20 cm) to provide systems with enhanced properties in terms of high efficiency, high quality light and flexibility as the luminaires can be combined to respond to different lighting tasks for indoor environmental applications. Final output of the research project was the manufacturing of three prototypes: a suspended luminaire (6 basic modules), a free-standing luminaire (4 basic modules) and a task lighting luminaire (1 module). The power supply system, consistently with the general concept, was developed for a single module rather than for the whole luminaire. Its architecture was conceived to allow the control of the luminaire (switching on/off, dimming) through the DALI digital protocol. Furthermore, some secondary optics were conceived and designed to concentrate the Lambertian light output and to increase the utilization factor of the flux.

Design and prototyping of a family of OLED luminaires for indoor environmental applications: results from the ODALINE project / Pellegrino, Anna; LO VERSO, VALERIO ROBERTO MARIA; Aghemo, Chiara; Sabrina, Fiorina; Piccablotto, Gabriele. - In: JOURNAL OF SOLID STATE LIGHTING. - ISSN 2196-1107. - ELETTRONICO. - 2:(2015), pp. 1-17. [10.1186/s40539-015-0025-x]

Design and prototyping of a family of OLED luminaires for indoor environmental applications: results from the ODALINE project

PELLEGRINO, Anna;LO VERSO, VALERIO ROBERTO MARIA;AGHEMO, Chiara;PICCABLOTTO, GABRIELE
2015

Abstract

Results of the project ‘ODALINE’ (OLED Devices Application in Luminaires for Interior and Exterior lighting) are presented. A team of academic and industrial partners worked together to design and manufacture a family of OLED luminaires. The project went through the following phases: i) analysis of the state-of-the-art of OLED technology; ii) identification of scenarios and application fields for OLED-based lighting systems and definition of requirements and performances expected for each scenario; iii) definition of the concept of new OLED lighting systems and development of their preliminary design; iv) executive design and manufacturing of some prototypes. After the identification of the most suitable OLED unit and of the application scenarios, the concept of the new luminaires was conceived: the luminaires rely on a suitable aggregation of a base module (consisting of an array of 6 OLED units, measuring 30 cm ∗ 20 cm) to provide systems with enhanced properties in terms of high efficiency, high quality light and flexibility as the luminaires can be combined to respond to different lighting tasks for indoor environmental applications. Final output of the research project was the manufacturing of three prototypes: a suspended luminaire (6 basic modules), a free-standing luminaire (4 basic modules) and a task lighting luminaire (1 module). The power supply system, consistently with the general concept, was developed for a single module rather than for the whole luminaire. Its architecture was conceived to allow the control of the luminaire (switching on/off, dimming) through the DALI digital protocol. Furthermore, some secondary optics were conceived and designed to concentrate the Lambertian light output and to increase the utilization factor of the flux.
File in questo prodotto:
File Dimensione Formato  
Pellegrino2015_Article_DesignAndPrototypingOfAFamilyO.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2614378
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo