With a universally accepted abuse of terminology, materials having much larger stiffness for volumetric than for shear deformations are called incompressible. This work proposes two approaches for the evaluation of the correct form of the linear elasticity tensor of so-called incompressible materials, both stemming from non-linear theory. In the approach of strict incompressibility, one imposes the kinematical constraint of isochoric deformation. In the approach of quasi-incompressibility, which is often employed to enforce incompressibility in numerical applications such as the Finite Element Method, one instead assumes a decoupled form of the elastic potential (or strain energy), which is written as the sum of a function of the volumetric deformation only and a function of the distortional deformation only, and then imposes that the bulk modulus be much larger than all other moduli. The conditions which the elasticity tensor has to obey for both strict incompressibility and quasi-incompressibility have been derived, regardless of the material symmetry. The representation of the linear elasticity tensor for the quasi-incompressible case differs from that of the strictly incompressible case by one parameter, which can be conveniently chosen to be the bulk modulus. Some important symmetries have been studied in detail, showing that the linear elasticity tensors for the cases of isotropy, transverse isotropy and orthotropy are characterised by one, three and six independent parameters, respectively, for the case of strict incompressibility, and two, four and seven independent parameters, respectively, for the case of quasi-incompressibility, as opposed to the two, five and nine parameters, respectively, of the general compressible case

The linear elasticity tensor of incompressibile materials / S., Federico; Grillo, Alfio; S., Imatani. - In: MATHEMATICS AND MECHANICS OF SOLIDS. - ISSN 1081-2865. - ELETTRONICO. - 20:6(2015), pp. 643-662. [10.1177/1081286514550576]

The linear elasticity tensor of incompressibile materials

GRILLO, ALFIO;
2015

Abstract

With a universally accepted abuse of terminology, materials having much larger stiffness for volumetric than for shear deformations are called incompressible. This work proposes two approaches for the evaluation of the correct form of the linear elasticity tensor of so-called incompressible materials, both stemming from non-linear theory. In the approach of strict incompressibility, one imposes the kinematical constraint of isochoric deformation. In the approach of quasi-incompressibility, which is often employed to enforce incompressibility in numerical applications such as the Finite Element Method, one instead assumes a decoupled form of the elastic potential (or strain energy), which is written as the sum of a function of the volumetric deformation only and a function of the distortional deformation only, and then imposes that the bulk modulus be much larger than all other moduli. The conditions which the elasticity tensor has to obey for both strict incompressibility and quasi-incompressibility have been derived, regardless of the material symmetry. The representation of the linear elasticity tensor for the quasi-incompressible case differs from that of the strictly incompressible case by one parameter, which can be conveniently chosen to be the bulk modulus. Some important symmetries have been studied in detail, showing that the linear elasticity tensors for the cases of isotropy, transverse isotropy and orthotropy are characterised by one, three and six independent parameters, respectively, for the case of strict incompressibility, and two, four and seven independent parameters, respectively, for the case of quasi-incompressibility, as opposed to the two, five and nine parameters, respectively, of the general compressible case
File in questo prodotto:
File Dimensione Formato  
FedericoGrilloImatani_MMS2015.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 292.05 kB
Formato Adobe PDF
292.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
FGI_MMS_2014-06-06_FINAL.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 430.81 kB
Formato Adobe PDF
430.81 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2589756