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Abstract1

With a universally accepted abuse of terminology, materials having much larger stiff-2

ness for volumetric than for shear deformations are called incompressible. This work3

proposes two approaches to the evaluation of the correct form of the linear elasticity4

tensor of the so-called incompressible materials, both stemming from the non-linear5

theory. In the approach of strict incompressibility, one imposes the kinematical con-6

straint of isochoric deformation. In the approach of quasi-incompressibility, which is7

often employed to enforce incompressibility in numerical applications such as the Fi-8

nite Element Method, one instead assumes a decoupled form of the elastic potential (or9

strain energy), which is written as the sum of a function of the volumetric deformation10

only and a function of the distortional deformation only, and then imposes that the11

bulk modulus be much larger than all other moduli. The conditions which the elas-12

ticity tensor has to obey for both strict incompressibility and quasi-incompressibility13

have been derived, regardless of the material symmetry. The representation of the lin-14

ear elasticity tensor for the quasi-incompressible case differs from that of the strictly15

incompressible case by one parameter, which can be conveniently chosen to be the16

bulk modulus. Some important symmetries have been studied in detail, showing that17

the linear elasticity tensor for the cases of isotropy, transverse isotropy and orthotropy18

is characterised by 1, 3, 6 independent parameters, respectively, for the case of strict19

incompressibility, and 2, 4, 7 independent parameters, respectively, for the case of20

quasi-incompressibility, as opposed to the 2, 5, 9 parameters, respectively, of the gen-21

eral compressible case.22

23

Keywords: covariant representation, Elasticity, elasticity tensor, incompressibility,24

quasi-incompressibility, incompressible, quasi-incompressible, nearly-incompressible,25

material symmetry, anisotropy.26
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1 Introduction27

In several contexts of Continuum Mechanics, and particularly for materials such as elas-28

tomers and soft biological tissues, whose stiffness under volumetric compression is usually29

several orders of magnitude higher than the stiffness in shear, the mechanical behaviour30

of materials is studied under the assumption of either strict incompressibility or quasi-31

incompressibility. The constraint of isochoric (i.e., volume-preserving) deformation is often32

employed to approximate the behaviour of incompressible materials. To be more precise,33

we recall here that an idealised material body is said to be strictly incompressible when34

the substantial derivative of its mass density vanishes identically [1], i.e., when Dt% = 0,35

with % being the mass density of the body, and Dt the substantial derivative operator. In36

the case in which the mass of the body is locally conserved, the mass balance law of the37

body reads38

Dt%+ % div(v) = 0, (1)

where v is the velocity. Thus, setting Dt% equal to zero implies that Equation (1) reduces39

to40

div(v) = 0, (2)

in which case the velocity field is said to be divergence-free. Since the divergence of the41

velocity field is related to the time derivative of the volume ratio J = detF (where F is42

the deformation gradient) by43

J̇ = J div(v), (3)

the vanishing of div(v) implies that the volume ratio J is constant in time, and therefore44

isochoric motions are compatible with the requirement of incompressibility.45

The assumption of strict incompressibility, however, yields both theoretical and com-46

putational issues. Within the framework of the Finite Element Method, it requires the de-47

velopment of robust and efficient numerical schemes that prevent from mesh locking (e.g.,48

the Lagrange multiplier method, penalty methods, the Hu-Washizu variational principle,49

methods based on higher-order shape functions), while ensuring flexibility and containing50

computational cost [2, 3, 4]. Granted hyperelastic material behaviour from some given51

natural configuration of a body, these schemes generally express the elastic potential into52

a part depending solely on the volumetric deformation and a part depending solely on the53

distortional deformation. Whereas the former one depends solely on parameters that, in54

the linear theory, reduce to the bulk modulus (this can be either the true one or some55

suitably chosen constant, as in penalty methods), the latter one strongly depends on the56

body’s material symmetries (see, e.g., [5, 6]) and, in non-linear theories, is either obtained57

by fitting experimental data or given from the outset. In any case, the total non-linear58

elastic potential should lead to an elasticity tensor that is consistent with its linear coun-59

terpart [7], which is, in principle, always measurable experimentally. In linear elasticity,60

the usual approach to study incompressibility is based on the compliance elasticity tensor,61

the inverse of the (stiffness) elasticity tensor L, and on making the bulk modulus diverge62

(e.g., [8]). In this way, the (stiffness) elasticity tensor diverges and is thus not defined.63

Here, we propose a rigorous framework for determining the correct form of the lin-64

ear elasticity tensor of incompressible and quasi-incompressible materials, starting from65

the theory of Non-Linear Elasticity. We shall start by performing a full inverse Piola66

transform of the standard material elasticity tensor, so to derive the standard spatial elas-67

ticity tensor, and then evaluate the latter at zero strain, to finally obtain the (spatial)68
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linear elasticity tensor. This approach can be exploited to enforce that the non-linear69

elastic material is consistent with its linearised counterpart [7]. We had previously [9]70

worked out the calculations for the case of isotropic quasi-incompressible materials and71

now aim at giving the general expression of the elasticity tensor for the strictly incom-72

pressible and the quasi-incompressible cases, regardless of material symmetry, and then73

retrieve the important particular cases of isotropy, transverse isotropy and orthotropy. For74

the case of strict incompressibility, we show that the number of independent elastic con-75

stants decreases from 2 to 1 for isotropy, from 5 to 3 for transverse isotropy, and from 976

to 6 for orthotropy. For the case of quasi-incompressibility, the bulk modulus is an ad-77

ditional independent elastic constant in all cases. The framework we propose also allows78

to conveniently check for the positive semi-definiteness (strictly incompressible case) or79

definiteness (quasi-incompressible case) of the elasticity tensor. Positive definiteness or80

semi-definiteness determine the strict convexity or convexity, respectively, of the quadratic81

potential of the linear theory, and influence the mathematical properties of the solutions,82

such as existence, uniqueness, smoothness, etc. (see, e.g., [10]).83

This work is motivated by the importance that the elasticity tensor has in general, in84

both linear and non-linear Elasticity. Indeed, the elasticity tensor plays an essential role in85

Computational Mechanics, as it is the main “ingredient” defining the large stiffness matrices86

that are then employed by the solver modules of Finite Element packages. In Non-Linear87

Elasticity, the choice of the form of the elasticity tensor is various, depending on the choice88

of objective stress rate and measure of rate of deformation (see, e.g., [11, 12]). In contrast,89

in the small-strain theory, since all measures of stress converge to the Cauchy stress, and90

all measures of strain converge to the infinitesimal strain, also all possible elasticity tensors91

converge to the “classical” elasticity tensor of Linear Elasticity.92

The paper is structured in six sections (including Introduction and Discussion). Section93

2 introduces the notation, reports some results from Tensor Algebra that are relevant to94

our purposes, and recalls the expressions of the elasticity tensor of the non-linear and linear95

theory for the general compressible case when the volumetric-distortional decomposition96

of the deformation [13, 14, 15] is used. Section 3 deals with incompressible elasticity and97

includes our results on the representation of the elasticity tensor in the non-linear and the98

linear theory, regardless of material symmetry. Section 4 consists of the study of the linear99

elasticity tensor for incompressible materials for the case of isotropy, transverse isotropy100

and orthotropy. Section 5 is devoted to a discussion about the issues of invertibility and101

positive definiteness of the linear elasticity tensor for the cases of strict incompressibility102

and quasi-incompressibility.103

2 Theoretical Background104

Here, we briefly introduce the general notation employed in this work, report some re-105

sults from Tensor Algebra that are related to the Theory of Elasticity [16], and recall the106

representation of the material, spatial and linear elasticity tensors when the volumetric-107

distortional decomposition of the deformation is used [17, 16]. Furthermore, we also refer108

to Walpole’s formalism for the representation of fourth-order tensors [18] in all possible109

symmetries, although here we limit ourselves to the most common cases: isotropy, trans-110

verse isotropy, orthotropy. Walpole had introduced this formalism in an earlier work [19],111

which we used extensively in the past (see. e.g., [20]). The newer representation devised by112

Walpole [18], which we employ here, introduces a very convenient matrix-based formalism.113

With respect to, e.g., Spencer’s [21] representation (which has several convenient features114

on which we shall not elaborate here), one of the greatest advantages of Walpole’s repre-115
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sentation [18] is that it makes it extremely easy to check for the positive definiteness or116

invertibility of a fourth-order tensor, seen as an operator between spaces of second-order117

tensors.118

Although differentiable manifolds are the most general and appropriate theatre for the119

description of Mechanics [22, 23], we restrict ourselves to the (much) simpler case of a three-120

dimensional affine space, which avoids the long series of theoretical intricacies brought121

about by high-level Differential Geometry. Roughly speaking, an affine space is a vector122

space in which any point can be a “local origin”, thereby allowing vectors to be attached123

at any point. More rigorously, an affine space is given by a set S, called the point space,124

considered together with a vector space V, called the modelling space, and a map F : S ×125

S → V that, for every pair of points x, y of S, yields a vector of V denoted F(x, y) = y−x =126

v, called the oriented segment from x to y. This map has to satisfy anti-commutativity,127

i.e., [x − y] = −[y − x], the triangle rule, i.e., y − x = [y − z] + [z − x], and the axiom of128

arbitrary origin, i.e., for every x ∈ S and v ∈ V there exists one, and only one, y ∈ S, such129

that y−x = v. Given any point x ∈ S, the axiom of arbitrary origin permits to define the130

set TxS = {vx = y − x : y ∈ S} of all the vectors emanating from x. The space TxS and131

its dual space T ?xS are called the tangent space and the cotangent space, respectively, at132

point x, and their elements are called tangent vectors and tangent covectors, respectively,133

at point x. The disjoint union of all tangent spaces TxS for all x ∈ S is called the tangent134

bundle of S, and is denoted by TS; the cotangent bundle T ?S is defined analogously. A135

thorough introduction to affine spaces is given, e.g., by Epstein [23].136

The structure of affine space is the minimal structure needed for Differential Calculus,137

since a derivative is in fact a tangent vector. This is immediately reflected in the descrip-138

tion of Classical Physics, where the structure of affine space allows for attaching a vector139

representing a given physical quantity at any point of space. The prime example is that140

of the velocity, which, being the time derivative of a trajectory, is in fact a tangent vector141

in the sense of affine spaces, aside from being also tangent to the trajectory of the parti-142

cle. The modelling space used in the definition of the physical affine space S of Classical143

Physics is the familiar R3. This space S is indeed very similar to R3 and one barely sees144

the difference, as long as vectors from the same tangent space are involved. Therefore, in145

many works in the literature (among which some of our past works), the affine space S146

of Classical Physics is simply denoted R3. However, following a didactical approach, we147

prefer to keep the distinction between the affine space S and its modelling space R3.148

Throughout this work, we employ the covariant formalism, i.e., we keep the distinction149

between a vector space and its dual space or, equivalently, between vectors and covectors.150

Aside from the fact that this allows for introducing general curvilinear coordinates, and151

for accounting for geometrical non-linearities, it is of fundamental importance to clarify152

the transformation laws that each physical quantity obeys. Indeed, vectors and covectors153

obey different transformation laws, and therefore the pull-back and push-forward opera-154

tions, crucial in Continuum Mechanics, are performed in a different way (see Section 2.1).155

Furthermore, as has also been remarked by Marsden and Hughes [22], the operations of156

pull-back/push-forward and of index raising/lowering do not commute, which means that157

even extra care must be taken when transforming vectorial or covectorial objects. The158

covariant formalism helps avoid errors, since it makes this non-commutativity evident.159

In conclusion, we deem the small additional pain of using the structure of affine space160

and the covariant formalism worth it for the exposition of our results. The notation in this161

and in some previous works [16, 24], to which we shall extensively refer, mostly follows the162

classical treatise by Marsden and Hughes [22], with some relatively small variations.163
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2.1 General Notation164

Lowercase symbols and indices are reserved to spatial quantities in the natural three-165

dimensional space S of Classical Mechanics. Uppercase symbols and indices denote ma-166

terial quantities in the reference configuration BR ⊂ S (or in the body manifold B, if no167

particular reference configuration is chosen [22, 25, 23]). At each point x ∈ S, the tangent168

and cotangent spaces are denoted TxS and T ?xS, respectively. The tangent and cotangent169

bundles are denoted TS and T ?S, respectively. Similarly, one defines the tangent and170

cotangent spaces TXBR and T ?XBR at X ∈ BR, and the tangent and cotangent bundles171

TBR and T ?BR. The spaces of spatial and material tensors of order m = r + s, with r172

vector feet and s covector feet (i.e., with r contravariant indices and s covariant indices)173

are denoted [TS]rs and [TBR]rs, respectively. The simple contraction of two tensors such174

that the last foot of the first tensor is a vector and the first foot of the second tensor175

is a covector (or vice versa) is indicated by simply juxtaposing the two tensors, e.g., for176

a ∈ [TS]20 and c ∈ [TS]02, the contraction ac has components aabcbc. The double contrac-177

tion of two tensors is similar to the simple contraction, except that the last two feet of the178

first tensor and the first two feet of the second tensor contract, and is denoted by a colon,179

e.g., for T ∈ [TS]22 and a ∈ [TS]20, the contraction T : a has components Tabcda
cd.180

The spaces TS and TBR are assumed to be equipped with metric tensors g and G,181

respectively. The scalar products induced by the metric tensors g and G are denoted by182

the symbol 〈 · , · 〉 for tensors of any order. For vectors or covectors, this is replaced by a183

simple low dot, e.g., for the case of spatial vectors, g(u,v) = ug v = 〈u,v〉 = u.v. For the184

case of higher-order tensors (of the same type), each couple of homologous indices has to be185

contracted with the appropriate metric tensor, e.g., for the case of spatial “contravariant”186

fourth-order tensors (i.e., tensors in [TS]40), we have 〈A, B〉 = Aabcd gai gbj gck gdl B
ijkl. Note187

that we employ the usual identification gab ≡ (g−1)ab throughout. The metric tensor g188

lowers contravariant indices, e.g., for the case of a vector v, it gives the associated covector189

v[ = gv, with components va = gabv
b. Analogously, the inverse metric tensor g−1 raises190

covariant indices, e.g., for the case of a covector ϕ, it gives the associated vector ϕ] = g−1ϕ,191

with components ϕa = gabϕb. Moreover, we use a single low dot to indicate that the metric192

tensor (or its inverse) is involved in the contraction of two tensors such that the last foot of193

the first tensor and the first foot of the second tensor are of the same type. For instance,194

if a, b ∈ [TS]20, the expression a.b stands for ag b, which has components aab gbc bcd.195

The deformation, χ : BR → S, maps material points X ∈ BR into spatial points196

x = χ(X) ∈ S, and its tangent map, the deformation gradient F : TBR → TS, maps197

material tangent vectors W ∈ TBR into spatial tangent vectors w = FW ∈ TS, such198

that the directional derivative of χ with respect toW at point X is (∂Wχ)(X) = F (X)W ,199

and the components of F are F aA = χa,A. Given a material tensor field P valued200

in [TBR]rs, its push-forward χ∗[P] = P is the tensor field valued in [TS]rs obtained201

by contracting each contravariant index with F and each covariant index with F−T ,202

which in components reads Pa......b = F aA ... (F
−T )b

B PA......B. Analogously, given a spa-203

tial tensor field Q valued in [TS]rs, its pull-back χ∗[Q] = Q is the tensor field valued204

in [TBR]rs obtained by contracting each contravariant index by F−1 and each covari-205

ant index by F T , i.e., QA...
...B = (F−1)Aa ... (F

T )B
b Qa......b. Note that the operations206

of pull-back/push-forward and of index raising/lowering do not commute: indeed, e.g.,207

χ∗[v[] = F T [gv] 6= G[F−1v] = [χ∗[v]][ (see, e.g., [22]).208

The right and left Cauchy-Green deformation tensors are the pull-back C = F T.F =209

F Tg F of the spatial metric g, and the push-forward b = F.F T = F G−1F T of the inverse210

material metric G−1, respectively. Their inverses B = C−1 = F−1.F−T = F−1g−1F−T211

and c = b−1 = F−T .F−1 = F−TGF−1 are the pull-back of the inverse spatial metric g−1212
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and the push-forward of the material metric G, respectively. The Green-Lagrange strain,213

comparing the pull-back C of the spatial metric g to the material metric G, is given by214

E = 1
2(C −G). The volume ratio can be defined as J = detF ≡

√
detC =

√
det b [24]215

and its time derivative is J̇ = J div(v) = J B : Ė = 1
2J B : Ċ [3]. In the volumetric-216

distortional decomposition of the deformation [13, 14, 15], we have F = J1/3F̄ , C = J2/3C̄,217

where C̄ = F̄ T.F̄ , and E = J2/3Ē + 1
2(J2/3 − 1)G, where Ē = 1

2(C̄ −G).218

2.2 Identity, Spherical, Deviatoric Operators; Tensor Basis for Isotropy219

In the space [TS]22 of symmetric fourth-order tensors (symmetric in the sense of metric220

transposition [16]) with the first two feet being vectorial and the second two being cov-221

ectorial (in terms of components, with the first two indices being contravariant and the222

second two being covariant), the symmetric identity, spherical, and deviatoric operators223

[16], defined by using the special tensor products ⊗ and ⊗ introduced by Curnier et al.224

[26], read225

I = 1
2(i ⊗ i+ i ⊗ i), (4a)

K = 1
3 g
−1⊗ g, (4b)

M = I− K, (4c)

and have components226

I
ab
cd = 1

2(δacδ
b
d + δadδ

b
c), (5a)

K
ab
cd = 1

3 g
abgcd, (5b)

M
ab
cd = 1

2(δacδ
b
d + δadδ

b
c)− 1

3 g
abgcd. (5c)

When applied to a symmetric second-order tensor a ∈ [TS]20, K and M yield the spherical227

and deviatoric parts of a, respectively, i.e.,228

sph(a) = K : a = 1
3 tr(a) g−1, dev(a) = M : a = a− 1

3 tr(a) g−1, (6)

where tr( · ) is the natural trace operator, such that tr(a) = g−1 : a = gabaab. Further-229

more, {K,M} is the canonical basis of the subspace of symmetric isotropic tensors in [TS]22,230

where isotropy is defined as the symmetry (i.e., invariance) with respect to arbitrary ro-231

tations. The spherical and deviatoric operators enjoy the properties of idempotence and232

orthogonality [19, 18, 16], i.e.,233

K : K = K, M : M = M, (7a)
K : M = O, M : K = O, (7b)

where O is the null fourth-order tensor in [TS]22.234

Stiffness and compliance elasticity tensors belong to [TS]40 and [TS]04, respectively and,235

for our purposes, it is important to recall the expressions of the identity, spherical and236

deviatoric operators in these spaces. These are obtained by raising and lowering all indices237

of the tensors in Equation (4), respectively, to obtain [16]238

I] = 1
2(g−1 ⊗ g−1 + g−1 ⊗ g−1), (8a)

K] = 1
3 g
−1⊗ g−1, (8b)

M] = I] − K], (8c)
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and239

I[ = 1
2(g ⊗ g + g ⊗ g), (9a)

K[ = 1
3 g⊗ g, (9b)

M[ = I[ − K[, (9c)

which have component expressions240

I
abcd = 1

2(gacgbd + gadgbc), (10a)

K
abcd = 1

3 g
abgcd, (10b)

M
abcd = 1

2(gacgbd + gadgbc)− 1
3 g

abgcd, (10c)

and241

Iabcd = 1
2(gac gbd + gad gbc), (11a)

Kabcd = 1
3 gab gcd, (11b)

Mabcd = 1
2(gac gbd + gad gbc)− 1

3 gab gcd. (11c)

Again, {K],M]} and {K[,M[} are the canonical bases of the subspaces of symmetric isotropic242

tensors in [TS]40 and [TS]04, respectively. Also the tensors K] and M], and the tensors K[243

and M[ enjoy idempotence and orthogonality, and a thorough analysis can be found in a244

previous work [16], which reports the results obtained by Walpole [19, 18] in the covariant245

formalism also adopted here.246

Note that a symmetric isotropic fourth-order tensor in [TS]22 (or [TS]40 or [TS]04) is247

positive definite if, and only if, its components in the basis {K,M} (or {K],M]} or {K[,M[},248

respectively), are strictly positive, and invertible if, and only if, its components are both249

different from zero.250

In the Theory of Elasticity, the pulled-back material counterparts of the spatial opera-251

tors in [TS]22, [TS]40 and [TS]04 are of particular relevance, and we recall them here [16],252

omitting the component forms, which can be deduced by analogy with those of the spatial253

operators [16]. The pull-back of the operators in [TS]22 yields the operators in [TBR]22,254

I = 1
2(I ⊗ I + I ⊗ I), (12a)

K∗ = 1
3 B⊗C, (12b)

M∗ = I∗ −K∗, (12c)

where we note that the pull-back I∗ coincides with the material identity I. When applied255

to a symmetric second-order tensor A ∈ [TBR]20, K∗ and M∗ yield the pulled-back spherical256

and deviatoric parts of A, respectively, evaluated with respect to the pulled-back metric257

C = χ∗[g], i.e.,258

Sph∗(A) = K∗ : A = 1
3 Tr∗(A)B, Dev∗(A) = M∗ : A = A− 1

3 Tr∗(A)B, (13)

where Tr∗( · ) is the material pulled-back trace operator [16], i.e., the trace evaluated with259

respect to the pulled-back metric C = χ∗[g], such that Tr∗(A) = C : A = CABA
AB. The260

pull-back of the operators in [TS]40 yields the operators in [TBR]40261

I]∗ = 1
2(B ⊗ B +B ⊗ B), (14a)

K]∗ = 1
3 B⊗B, (14b)

M]∗ = I]∗ −K]∗, (14c)
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and the pull-back of the operators in [TS]04 yields the operators in [TBR]04262

I[∗ = 1
2(C ⊗ C +C ⊗ C), (15a)

K[∗ = 1
3 C⊗C, (15b)

M[∗ = I[∗ −K[∗. (15c)

We recall that C is the right Cauchy-Green deformation and B = C−1 is its inverse.263

2.3 Tensor Basis For Transverse Isotropy264

Let m ∈ TS be a unit vector with respect to the metric g, i.e., such that its Euclidean265

norm is unitary:266

‖m‖2 = m.m = mgm = 1. (16)

Transverse isotropy with respect to m is defined as the symmetry (i.e., the invariance)267

with respect to rotations about m. The direction identified by m is called symmetry axis268

and the class of equivalence of the planes orthogonal to m is called transverse plane.269

The basis of all second-order tensors in [TS]20 with transverse isotropy with respect to270

direction m is given by271

a = m⊗m, (17a)

t = g−1 − a. (17b)

Note that t is the complement of tensor a to g−1 (the “contravariant identity”, i.e., the272

identity in the tensor space [TS]20), and that both a and t are invariant under the trans-273

formation mapping m into −m, i.e., the sense of m is irrelevant. Tensor a is often called274

structure tensor or fabric tensor of direction m. By means of the metric tensor g, it is275

possible to contract tensors a and t with a vector v, and to obtain the axial and transverse276

components of v:277

v‖ = a.v, (18a)

v⊥ = t.v. (18b)

By means of suitable tensor products, Walpole [18] derived a basis for fourth-order tensors278

with transverse isotropy with respect to m, which we report for tensors in [TS]40:279

U11 = a⊗ a, (19a)
U22 = 1

2 t⊗ t, (19b)

U12 =
√
2
2 a⊗ t, (19c)

U21 =
√
2
2 t⊗ a, (19d)

V1 = 1
2 (t⊗ t+ t⊗ t− t⊗ t), (19e)

V2 = 1
2 (a⊗ t+ a⊗ t+ t⊗ a+ t⊗ a). (19f)

In this basis, a tensor T ∈ [TS]40, transversely isotropic with respect to m, is expressed as280

T = T̃
prUpr + T̃

αVα, (20)

where we call the collection {T̃} of Walpole’s components T̃pr and T̃α Walpole’s represen-281

tation of T [20]. Since the tensors Upr constitute an algebra isomorphic to that of 2 × 2282

matrices, Walpole’s components can be grouped as [18]283

{T̃} =

{[
T̃11 T̃12

T̃21 T̃22

]
, T̃1, T̃2

}
, (21)
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and all operations on transversely isotropic tensors T can be performed by working on their284

representations {T̃}. The four T̃pr and the two T̃α are obtained by the scalar product of T285

with each of the basis tensors, with some normalisation constants:286

T̃
pr = 〈T, Upr〉, T̃

α = 1
2 〈T, Vα〉. (22)

Since UT12 = U21, tensor T possesses diagonal symmetry if, and only if, T̃12 = T̃21, in which287

case it has only 5, rather than 6, independent components.288

Given an orthonormal basis {ea}3a=1, such that e1 = m, the components {T̃} are related289

to the conventional components Tabcd of T by290

{T̃} =

{[
T1111

√
2 T1122

√
2 T2211 2 T2222 − 2 T2323

]
, 2 T

2323, 2 T
1212

}
. (23)

Note that the full-symmetric “contravariant” fourth-order identity, spherical and deviatoric291

operators in [TS]40, defined in Equation (8), have Walpole’s representations292

{̃I]} =

{[
1 0
0 1

]
, 1, 1

}
, (24a)

{K̃]} =

{[
1
3

√
2
3√

2
3

2
3

]
, 0, 0

}
, (24b)

{M̃]} =

{[
2
3 −

√
2
3

−
√
2
3

1
3

]
, 1, 1

}
. (24c)

It is very important to notice that all the associated tensors obtained from a tensor in293

[TS]40 by lowering any of its indices (i.e., by transforming any of its vector feet into covector294

feet by means of the metric tensor g) share the same Walpole representation, as it becomes295

clear by looking at the scalar products (22) in components (e.g., Tabcd gai gbj gck gdl [Upr]ijkl),296

manipulating the metric tensors, and exploiting identities of the type ghmgmn = δhn. In297

practice, the transformation is entirely shifted onto the basis tensors, leaving Walpole’s298

components untouched. This allows for exploiting the isomorphism between transversely299

isotropic fourth-order tensors and their Walpole’s representation to perform any operation.300

For example, the double contraction of a tensor in [TS]22 and one in [TS]40 can be performed301

by multiplying the matrix of the former with the matrix of the latter, and the individual302

scalars of the former with those of the latter, without worrying about which indices are303

contravariant and which covariant, as this is all taken into account by the basis tensors.304

For the case of transverse isotropy, a tensor T is positive definite if its Walpole’s repre-305

sentation {T̃} is such that the 2× 2 matrix [T̃pq] is positive definite, and the two scalars T̃α306

are strictly positive. Similarly, T is invertible if [T̃pq] is invertible and the two scalars T̃α307

are different from zero, and the inverse T−1 (which belongs to [TS]04, if T belongs to [TS]40)308

has Walpole’s representation309

{T̃−1} =

{[
T̃11 T̃12

T̃21 T̃22

]−1
, 1/T̃1, 1/T̃2

}
. (25)

2.4 Tensor Basis For Orthotropy310

Let {mp}3p=1 be a basis for TS, satisfying the condition of orthonormality with respect311

to the metric g, i.e.,312

mp.mq = mp gmq = δpq, (26)
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Given such a basis, the inverse metric tensor can be expressed as313

g−1 =
∑3

p=1mp ⊗mp. (27)

Orthotropy with respect to the basis {mp}3p=1 is defined as the symmetry (i.e., invariance)314

under reflection of any of the three mp.315

The orthonormal basis {mp}3p=1 can be used to construct the basis for the space of316

second-order tensors in [TS]20 as317

zpq = mp ⊗mq, (28)

and the basis for the space of fourth-order tensors in [TS]40 as318

Zpqrs = zpq ⊗ zrs = mp ⊗mq ⊗mr ⊗ms. (29)

The basis for the subspace of the space of [TS]20 with orthotropy with respect to {mp}3p=1319

is obtained by defining the three tensors [18]320

ap = zpp = mp ⊗mp, no sum on p, (30)

which are often called structure tensors or fabric tensors of the directions mp. It is im-321

mediate to verify that the tensors (30) are invariant for reflections of the mp (transfor-322

mations mapping mp into −mp), i.e., are orthotropic with respect to {mp}3p=1, linearly323

independent, and generate the space of orthotropic tensors with respect to {mp}3p=1. The324

corresponding basis for the subspace of the space of fourth-order tensors in [TS]40 with325

orthotropy with respect to {mp}3p=1 was obtained by Walpole [18] as326

Upr = Zpprr, ∀p, r ∈ {1, 2, 3}, no sum on p and r, (31a)
V1 = 1

2 [Z2323 + Z3232], (31b)
V2 = 1

2 [Z1313 + Z3131], (31c)
V3 = 1

2 [Z1212 + Z2121]. (31d)

A fourth-order tensor T ∈ [TS]40, orthotropic with respect to {mp}3p=1, can be thus written327

as328

T = T̃
pr Upr + T̃

α Vα, (32)

where we call the collection {T̃} of Walpole’s components T̃pr and T̃α Walpole’s representa-329

tion of the tensor T. Similarly to the case of transverse isotropy, Walpole [18] showed that330

the basis tensors Upr constitute an algebra isomorphic to that of 3 × 3 matrices and that331

the components T̃pr and T̃α can be grouped as332

{T̃} =
{

[T̃pr], T̃1, T̃2, T̃3
}
. (33)

The nine T̃pr and the three T̃α are obtained as the scalar product of T with each of the333

basis tensors:334

T̃
pr = 〈T, Upr〉, T̃

α = 1
2 〈T, Vα〉. (34)

Since Upr = UTrp, diagonal symmetry of T is attained if, and only if, the matrix [T̃pr] is335

symmetric. In this case, T has 9, rather than 12, independent components.336

Note that the relation of Walpole’s components T̃pr and T̃α with the conventional com-337

ponents Tabcd of T is quite more straightforward in the case of orthotropy compared to the338

case of transverse isotropy, indeed:339

{T̃} =

{T1111 T1122 T1133

T2211 T2222 T2233

T3311 T3322 T3333

 , 2 T
2323, 2 T

1313, 2 T
1212

}
. (35)
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The full-symmetric “contravariant” fourth-order identity, spherical and deviatoric operators340

in [TS]40 of Equation (8) have Walpole’s representations341

{̃I]} =

{1 0 0
0 1 0
0 0 1

 , 1, 1, 1

}
, (36a)

{K̃]} =

{
1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

 , 0, 0, 0

}
, (36b)

{M̃]} =

{
2
3 −1

3 −1
3

−1
3

2
3 −1

3

−1
3 −1

3
2
3

 , 1, 1, 1

}
. (36c)

Analogously to the case of transverse isotropy, all the associated tensors obtained from342

a tensor in [TS]40 by lowering any of its indices by means of the metric tensor g share343

the same Walpole representation, as the transformation is entirely ascribed to the basis344

tensors. Again, this allows for orthotropic fourth-order tensors to be inverted, summed345

and double-contracted by working on their Walpole’s representations.346

positive definiteness and invertibility of an orthotropic fourth-order tensor T are checked347

analogously to the case of transverse isotropy. T is positive definite if the 3×3 matrix [T̃pq]348

in its Walpole’s representation T̃ is positive definite, and the three scalars T̃α are strictly349

positive, and invertible if [T̃pq] is invertible and the three scalars T̃α are different from zero.350

The Walpole representation of the inverse is analogous to that of the transversely isotropic351

case seen in Equation (25).352

2.5 Hyperelasticity and Volumetric-Distortional Decomposition353

Within a purely mechanical framework, the dissipation density D per unit volume of354

the undeformed configuration of a body comprised of a simple material is defined by [27]355

D = −Ẇ + S : Ė ≥ 0. (37)

In the inequality (37), which has to hold at all points X of BR and at all times, W is356

the stored energy function per unit volume of BR, S is the second Piola-Kirchhoff stress357

tensor, and E is the Green-Lagrange strain tensor. For the case of a hyperelastic material,358

W and S are expressed as constitutive functions of E, such that359

W = Ŵ (E), S = Ŝ(E), (38)

andW is referred to as the elastic potential (or strain energy) density. We remark that the360

constitutive functions may depend explicitly on the position X, in which case the material361

is inhomogeneous, but we omit indicating this dependence for the sake of a lighter notation.362

Substituting (38) into (37) yields363

D = −∂Ŵ
∂E

(E) : Ė + Ŝ(E) : Ė (39)

=

[
Ŝ(E)− ∂Ŵ

∂E
(E)

]
: Ė ≥ 0.

The inequality (39) implies that D is a function of E and Ė, i.e. D = D̂(E, Ė). Since Ė364

is neither an independent nor a dependent constitutive variable, D̂ depends linearly on Ė365
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(in particular, D̂(E,O) = 0), which therefore can be varied arbitrarily. Consequently, in366

order to ensure that the inequality is always respected, it must hold that367 [
Ŝ(E)− ∂Ŵ

∂E
(E)

]
: Ė = 0, (40)

which implies that the second Piola-Kirchhoff stress is given by the derivative of the elastic368

potential with respect to the Green-Lagrange strain:369

S = Ŝ(E) =
∂Ŵ

∂E
(E). (41)

The second derivative of the elastic potential is the material elasticity tensor370

C = Ĉ(E) =
∂2Ŵ

∂E2
(E), (42)

which, evaluated at zero strain, yields the material linear elasticity tensor371

L = Ĉ(O) =
∂2Ŵ

∂E2
(O). (43)

The inverse Piola transform of the material elasticity tensor C is the spatial elasticity372

tensor373

C = J−1 χ∗[C], C
abcd = J−1F aAF

b
BF

c
CF

d
D CABCD, (44)

which, evaluated at zero strain, yields the spatial linear elasticity tensor L. Equivalently,374

the spatial linear elasticity tensor L can be obtained as the inverse Piola transform of the375

material linear elasticity tensor L performed in the undeformed state, when J = 1 and376

F = 1, where 1 is the shifter [1, 22], i.e., in components,377

L
abcd = 1aA1

b
B1

c
C1

d
D LABCD. (45)

Physically, the shifter parallel transports tangent vectors from a material point to a spatial378

point and, in the most general case, its representing matrix is orthogonal, which means that379

the components of L and L differ merely by a rigid rotation. Moreover, for the particular380

case of collinear Cartesian coordinates in BR and S, the components of the shifter 1 are381

simply 1aA = δaA, and therefore the components of the material and spatial linear elasticity382

tensors coincide. For this reason, in Linear Elasticity, it is practically equivalent to speak383

about the material or the spatial linear elasticity tensor. Therefore, it is indifferent to384

speak about material symmetries in the material or in the spatial picture, and this is why,385

in Sections 2.2, 2.3, 2.4, we reported the tensor bases in the spatial picture only. We remark386

that, in the general non-linear case, the material symmetries of a body are studied in the387

material picture of Mechanics (e.g., [28, 1, 22, 15]).388

When the volumetric-distortional decomposition of the deformation [13, 14] is employed,389

the elastic potential is written as a function390

Ŵ (E) = Ψ̂(J(E), Ē(E)) (46)

of the determinant J of the deformation gradient F and the distortional Green-Lagrange391

strain Ē, which are both regarded as explicit functions of the “full” Green-Lagrange strain392

E. Note the slight abuse of notation in writing J = J(E) =
√

det(2E +G) =
√

detC393
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and Ē = Ē(E). It has been shown [17, 16] that, with the decomposition (46), the material394

elasticity tensor reads395

C = −J p [3K]∗ − 2 I]∗] + 3 J2 K K]∗+

+ J1/3[B ⊗ (M∗ : Y ) + (M∗ : Y )⊗B]+

+ J−4/3 M∗ : C̃ : M∗T+

+ 2
3J
−2/3 Tr∗(S̃)M]∗−

− 2
3

[
B ⊗Dev∗(S) + Dev∗(S)⊗B

]
, (47)

where p = −∂Ψ̂/∂J is the hydrostatic pressure, S̃ = ∂Ψ̂/∂Ē is the second Piola-Kirchhoff396

pseudo stress, K = ∂2Ψ̂/∂J2 is the (large strain) bulk modulus, Y = ∂2Ψ̂/∂J∂Ē is the397

coupling tensor (or interaction tensor), C̃ = ∂2Ψ̂/∂Ē2 is the pseudo elasticity tensor,398

Tr∗(S̃) = C : S̃ is the pulled-back trace of S̃, Dev∗(S) = M∗ : S = J−2/3M∗ : S̃ is the399

pulled-back deviatoric part of S. The spatial elasticity tensor reads400

C = −p [3K] − 2 I]] + 3 J K K]+

+ J1/3[g−1 ⊗ (M : y) + (M : y)⊗ g−1]+
+ J−4/3 M : C̃ : MT+

+ 2
3J
−2/3 tr(σ̃) M]−

− 2
3

[
g−1 ⊗ dev(σ) + dev(σ)⊗ g−1

]
, (48)

where C̃ = J−1χ∗[C̃], σ̃ = J−1χ∗[S̃], dev(σ) = J−1χ∗[Dev∗(S)], and y = J−1χ∗[Y ] are the401

inverse Piola transforms of C̃, S̃, Dev∗(S), and Y , respectively, and tr(σ̃) = J−1Tr∗(S̃).402

If the undeformed configuration, achieved when E vanishes and J is identically one,403

is also stress-free, then both p and σ vanish identically, and the linear elasticity tensor is404

obtained from Equation (48) as405

L = 3κ K] + g−1 ⊗ [M : α] + [M : α]⊗ g−1 + M : [L̃ + 2β M]] : MT , (49)

where the (linear elasticity) bulk modulus κ, α, β and L̃ are the values of K, y, 1
3tr(σ̃) and406

C̃, respectively, in the undeformed configuration.407

It has also been shown [17] that, in the purely algebraic decomposition of the linear408

elasticity tensor, obtained by premultiplying L by the identity I, post multiplying by IT ,409

and decomposing the identity into K + M, i.e.,410

L = I : L : IT = (K + M) : L : (K + M)T

= K : L : KT + K : L : MT + M : L : KT + M : L : MT , (50)

the identities411

K : L : KT = 3κK], (51a)

K : L : MT = g−1 ⊗ [M : α], (51b)

M : L : KT = [M : α]⊗ g−1, (51c)

M : L : MT = M : [L̃ + 2β M]] : MT , (51d)

hold, implying that the expression (49) of the linear elasticity tensor, obtained by use of412

the decomposition of the deformation, is term-by-term equivalent to the purely algebraic413

decomposition (50). In Equations (51), the term (51a) is purely spherical, the terms (51b)414
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and (51c) are mixed, and the term (51d) is purely deviatoric. Equations (51) are the415

key result in the evaluation of the linear elasticity tensor of strictly incompressible and416

quasi-incompressible materials.417

It is very important to note that, because of the orthogonality of the spherical and418

deviatoric operators, each of the four terms (51) is orthogonal to the other three in the419

scalar product induced by the metric g in the space [TS]40 of fourth-order “contravariant”420

tensors. In particular, we note that, since K : L : KT = 3κK] is orthogonal to the other421

three terms, and 〈K],K]〉 = 1, it is possible to obtain the bulk modulus as422

κ = 1
3 〈K

], L〉 = 1
3 〈K

],K : L : KT 〉 = 1
3 〈K

], 3κK]〉 = 1
9 gab gcd L

abcd. (52)

3 Incompressibile Hyperelasticity423

This section is dedicated to the derivation of the conditions that the linear elasticity424

tensor must obey for the cases of strict incompressibility and quasi-incompressibility. Strict425

incompressibility is a kinematical constraint on the volumetric deformation J = detF ,426

whereas quasi-incompressibility is obtained by requiring that a very large elastic energy is427

needed to make the volumetric deformation J change from its initial value of 1.428

3.1 Strict Incompressibility429

When the deformation is isochoric (strict incompressibility), Ė in Equation (40) is no430

longer arbitrary. Rather, it is subjected to the constraint431

J̇ = J div(v) = J B : Ė = 1
2J B : Ċ = 0, (53)

which states that the only admissible deformations are those such that B = C−1 is or-432

thogonal to Ċ in the sense of (53), i.e., B : Ċ = BABĊAB = 0. Since the constraint433

(53) is holonomic, it can be put into algebraic form by direct integration with respect to434

time. Setting, with the usual abuse of notation, J = J(E), and performing the integra-435

tion under the condition that J is equal to one in the undeformed configuration leads to436

J = J(E) = 1.437

Combining Equations (40) and (53) one obtains438

S − ∂Ŵ

∂E
(E) = λJ B, (54)

where λ is an arbitrary scalar, Lagrange multiplier arising from the kinematical constraint439

of isochoric motion. If we denote the hydrostatic pressure by π, in order to distinguish440

it from the “constitutive” hydrostatic pressure p = −∂Ψ̂/∂J introduced in the previous441

section, and recall the definition of hydrostatic pressure as the scalar of the spherical part442

(hydrostatic stress) of the Cauchy stress σ,443

−π g−1 = K : σ = 1
3 tr(σ) g−1 = 1

3 (g : σ) g−1, (55)

and its full Piola transform,444

−J πB = J K∗ : S = 1
3 J Tr∗(S)B = 1

3 J (C : S)B, (56)

involving the second Piola-Kirchhoff stress S, it can be shown that λ = −π if, and only if,445

Tr∗

(
∂Ŵ

∂E
(E)

)
=
∂Ŵ

∂E
(E) : C = 0, (57)
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where we recall that Tr∗ is the pulled-back trace operator [16] described in Section 2.2. If446

Ŵ is regarded a function of C rather than of E, Equation (57) means that the potential447

has to be a homogeneous function of order zero in C. Exploiting Euler’s theorem on448

homogeneous functions (see [3]) and going back to the argument E, one shows that the449

potential Ŵ must have the form450

Ŵ (E) = Ŵd(Ē(E)), (58)

i.e., Ŵ must be given by an explicit function Ŵd of the distortional strain Ē, called451

distortional potential. The second Piola-Kirchhoff stress reads452

S = Ŝ(E) = Sph∗(S) + Dev∗(S) = −J πB +
∂Ŵ

∂E
(E), (59)

where we recall that Sph∗ and Dev∗ are the pulled-back spherical and deviatoric operators453

associated with K∗ and M∗, respectively (Equation (12)). The material elasticity tensor is454

evaluated as in Equation (60), keeping in mind that all derivatives of Ŵ (E) = Ŵd(Ē(E))455

with respect to J vanish identically:456

C = −J π [3K]∗ − 2 I]∗]+

+ J−4/3 M∗ : C̃ : M∗T+

+ 2
3J
−2/3 Tr∗(S̃)M]∗−

− 2
3

[
B ⊗Dev∗(S) + Dev∗(S)⊗B

]
. (60)

The spatial elasticity tensor is therefore457

C = −π [3K] − 2 I]]+

+ J−4/3 M : C̃ : MT+

+ 2
3J
−2/3 tr(σ̃) M]−

− 2
3

[
g−1 ⊗ dev(σ) + dev(σ)⊗ g−1

]
, (61)

and the linear elasticity tensor reduces to458

L = M : [L̃ + 2β M]] : MT . (62)

Comparing Equations (62) and (51) we conclude that the linear elasticity tensor L of a459

strictly incompressible material must obey the three conditions460

K : L : KT = O, K : L : MT = O, M : L : KT = O, (63)

i.e., it must not contain spherical or mixed terms, but exclusively the deviatoric one. This461

result is valid in general, regardless of the material symmetry.462

3.2 Quasi-Incompressibility463

In this case, the elastic potential admits the particular decoupled form464

Ŵ (E) = Ψ̂(J(E), Ē(E)) = Û(J(E)) + Ŵd(Ē(E)). (64)

The mixed derivative Y = ∂2Ψ̂/∂J∂Ē vanishes identically, which yields the material
elasticity tensor

C = −J p [3K]∗ − 2 I]∗] + 3 J2 K K]∗+

+ J−4/3 M∗ : C̃ : M∗T+

+ 2
3J
−2/3 Tr∗(S̃)M]∗−

− 2
3

[
B ⊗Dev∗(S) + Dev∗(S)⊗B

]
, (65)
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the spatial elasticity tensor

C = −p [3 K] − 2 I]] + 3 J K K]+

+ J−4/3 M : C̃ : MT+

+ 2
3J
−2/3 tr(σ̃) M]−

− 2
3

[
g−1 ⊗ dev(σ) + dev(σ)⊗ g−1

]
, (66)

and the linear elasticity tensor465

L = 3κ K] + M : [L̃ + 2β M]] : MT . (67)

Comparing Equations (67) and (51), we deduce that the linear elasticity tensor of a quasi-466

incompressible material must obey the two conditions467

K : L : MT = O, M : L : KT = O, (68)

i.e., it must contain no mixed terms, but only the spherical and the deviatoric ones. By468

comparing Equations (62) and (67) and recalling (end of Section 2.5) that the term K :469

L : KT = 3κK] is orthogonal to the other three terms in Equation (51), it is evident that,470

as one would expect, the linear elasticity tensor for the quasi-incompressible case has one471

additional parameter with respect to the strictly incompressible case. It is convenient to472

identify this one additional parameter with the bulk modulus κ, obtained in Equation (52).473

We emphasise again that this is valid regardless of the material symmetry.474

Remark 3.1. We take this chance to remark that the decoupled potential (64) can be used475

exclusively for quasi-incompressible materials, and yields inconsistent material behaviour476

in the general compressible case: this has been reported a few decades ago by Musgrave477

[29] in the context of crystal elasticity, and demonstrated in a previous work [17] with478

the same methodology used here, i.e., by linearising the spatial elasticity tensor of the479

non-linear theory. Indeed, if the potential (64) were used for a compressible material,480

the linear elasticity tensor would be subjected to the conditions (68), which would reduce481

the number of independent elastic constants with respect to the general case. Therefore,482

one would find a compressible material with a given symmetry having less independent483

constants than expected (e.g., 4 rather than 5 for transverse isotropy, and 7, rather than 9,484

for orthotropy, as we shall show in Section 4 for quasi-incompressible materials). Whereas485

nothing, in principle, prevents conditions (68) from occurring for a compressible material,486

such material cannot certainly be considered a general case. Indeed, a first consequence487

of the adoption of (64) for the compressible case would be that an anisotropic material488

would not undergo distortional deformations under a hydrostatic stress, which is contrary489

to experimental observation (this has also been remarked in a recent paper by Vergori et490

al. [30]).491

4 Some Particular Material Symmetries492

The conditions (63) for strict incompressibility and (68) for quasi-incompressibility are493

general, and hold regardless of material symmetry. When a material symmetry is given,494

conditions (63) and (68) can be employed to find the number of independent components of495

the elasticity tensor. As we shall show, the case of isotropy is trivial. For the cases of trans-496

verse isotropy and orthotropy, it is convenient to enforce conditions (63) and (68) within497

Walpole’s formalism [18], which, due to the isomorphism between fourth-order tensors and498

the corresponding Walpole’s representations, allows for evaluating the double contractions499
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of tensors in conditions (63) and (68) by means of the matrix multiplication of the ma-500

trix parts and regular multiplication of scalars of the scalar parts of the corresponding501

Walpole’s representations of the tensors.502

4.1 Isotropy503

The linear elasticity tensor of a generic isotropic material is a fourth-order tensor in504

[TS]40 with the form505

L = 3κK] + 2µM], (69)

where κ is the bulk modulus and µ is the shear modulus. If strict incompressibility is en-506

forced, conditions (63) impose the that the linear elasticity tensor has only one independent507

elastic modulus, the shear modulus µ, and representation508

Lstrict = 2µM]. (70)

In contrast, the quasi-incompressibility conditions (68), are always identically verified, and509

therefore the elasticity tensor keeps two independent elastic constants, as in the general510

compressible case, and reads511

Lquasi = 3κK] + 2µM], (71)

where the bulk modulus κ is much larger than the shear modulus µ.512

Remark 4.1. Note that a quite common representation for isotropic elasticity tensors is513

in the form L = 3λK] + 2µ I], where λ and µ are called Lamé’s constants, and µ is still514

the shear modulus. This representation is very useful in several circumstances, such as,515

for example, in computations based on the Finite Element Method, where the term 2µ I]516

generates the symmetric, positive definite modified stiffness operator relating the nodal517

displacements with the nodal pressures and the external generalised forces (cf., e.g., [31]).518

Nevertheless, we believe that there are cases in which the representation L = 3κK] + 2µM]519

is more advantageous and physically sound. Indeed, the algebraic computations involving520

the elasticity tensor are easier (and their physical meaning becomes clearer), since K] and521

M] form an orthogonal basis [18, 20, 17, 16] (in contrast, K] and I] do not). Moreover, the522

constants κ and µ, which must be both strictly positive, have a direct physical meaning.523

For this reason, we prefer the representation terms of in K] and M].524

4.2 Transverse Isotropy525

Using Walpole’s formalism (Section 2.3), the linear elasticity tensor L of a generic trans-526

versely isotropic material has representation527

{L̃} =

{[
n

√
2 l√

2 l 2c

]
, 2µt, 2µa

}
, (72)

where n is the elastic modulus in uniaxial strain (compare with the Young’s modulus, which528

is the modulus in uniaxial stress), c is the plane-strain bulk modulus (in the transverse529

plane), l is called cross modulus, µt is the shear modulus in the transverse plane, and µa530

is the shear modulus in any plane containing the symmetry axis.531

The three strict incompressibility conditions (63) reduce to the two scalar conditions532

n+ 4 (c+ l) = 0, n− 2c+ l = 0, (73)

where we note that K : L : MT = O and M : L : KT = O both yield n− 2c+ l = 0. These two533

conditions state that only one of n, c and l is independent. Mathematically, electing any534
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of the three as the independent parameter is indifferent. However, looking at the physical535

meaning of each, we note that the most appropriate choice is536

α = −l. (74)

Indeed, both uniaxial strain and plane strain, to which n and c refer, respectively, are strain537

states that cannot be attained under the constraint of isochoric motion. The parameter l,538

instead, can be thought to be related to a triaxial state of strain that is compatible with539

isochoric motion. The cross-modulus l is the transversely isotropic equivalent of the first540

Lamé’s modulus λ of isotropic elasticity, to which it reduces in the limit case, as it can541

be easily verified with Spencer’s representation [21]. Note that, in general, similarly to λ,542

l can be negative, and must indeed be negative to ensure positive semi-definiteness and543

therefore convexity for the case of strict incompressibility, as we shall see in Section 5.544

With this choice, the linear elasticity tensor for strict incompressibility is represented by545

{L̃strict} =

{[
2α −

√
2 α

−
√

2 α α

]
, 2µt, 2µa

}
, (75)

with only three (from the original five) independent elastic constants.546

The quasi-incompressibility conditions (68) yield the single scalar condition547

n− 2c+ l = 0, (76)

meaning that only two of n, c and l are independent. Here we choose, as independent548

parameters, the bulk modulus549

κ = 1
3 〈K

], L〉 = 1
9 gab gcd L

abcd = 1
9 [n+ 4 (c+ l)], (77)

which is a linear combination of n, c and l, obtained by applying Equation (52) to the case550

of transverse isotropy, and551

α′ = κ− l. (78)

With this choice, the linear elasticity tensor for the transversely isotropic quasi-incompressible552

case reads553

{L̃quasi} =

{[
κ+ 2α′

√
2 (κ− α′)√

2 (κ− α′) 2κ+ α′

]
, 2µt, 2µa

}
, (79)

with four independent elastic constants: one more than for the case of strict incompress-554

ibility. Recalling Walpole’s transversely isotropic representation of K] (Equations (24)),555

the elasticity tensor can be written as556

{L̃quasi} = 3κ {K̃}+ {L̃′strict}, (80)

where {L̃′strict} has the same form as {L̃strict} of Equation (75), except for α being replaced557

by α′. Equation (80) emphasises that the quasi-incompressible case has one additional558

independent elastic constant with respect to the strictly incompressible case.559

4.3 Orthotropy560

Using Walpole’s formalism (Section 2.4), the linear elasticity tensor L of a generic or-561

thotropic material has representation562

{L̃} =

{L1111 L1122 L1133

L1122 L2222 L2233

L1133 L2233 L3333

 , 2µ23, 2µ13, 2µ12}, (81)
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where the diagonal elements of the symmetric 3×3 matrix are the moduli in uniaxial strain563

in the three orthotropic directions, the off-diagonal elements are the cross moduli, and µpq564

are the shear moduli in the pq-planes.565

Conditions (63) for strict incompressibility reduce to the three independent scalar con-566

ditions567

L
1111 + L

2222 + L
3333 + 2 L

2233 + 2 L
1133 + 2 L

1122 = 0, (82a)

2 L
1111− L

2222− L
3333− 2 L

2233 + L
1133 + L

1122 = 0, (82b)

−L
1111 + 2 L

2222− L
3333 + L

2233− 2 L
1133 + L

1122 = 0, (82c)

which imply that only three of the six Lppqq (no sum on p and q) are independent. Supported568

by arguments analogical to those made for the case of transverse isotropy, we choose, as569

independent parameters, the negatives of the cross moduli, i.e.,570

αpq = −L
ppqq, p 6= q, no sum on p and q, (83)

and obtain the representation571

{L̃strict} =

{α12 + α13 −α12 −α13

−α12 α12 + α23 −α23

−α13 −α23 α13 + α23

 , 2µ23, 2µ13, 2µ12}, (84)

with six independent elastic constants (from the original nine).572

For the case of orthotropy, the quasi-incompressibility conditions (68) yield the two573

scalar conditions574

2 L
1111− L

2222− L
3333− 2 L

2233 + L
1133 + L

1122 = 0, (85a)

−L
1111 + 2 L

2222− L
3333 + L

2233− 2 L
1133 + L

1122 = 0, (85b)

meaning that only four of the six Lppqq (no sum on p and q) are independent. If the575

independent parameters are chosen to be the bulk modulus576

κ =1
3 〈K

], L〉 = 1
9 gab gcd L

abcd =

=1
9 (L1111 + L

2222 + L
3333 + 2 L

2233 + 2 L
1133 + 2 L

1122), (86)

obtained by applying equation (52) to the case of orthotropy, and577

α′pq = κ− L
ppqq, p 6= q, no sum on p and q, (87)

the linear elasticity tensor for the orthotropic quasi-incompressible case reads578

{L̃quasi} =

{κ+ α′12 + α′13 κ− α′12 κ− α′13
κ− α′12 κ+ α′12 + α′23 κ− α′23
κ− α′13 κ− α′23 κ+ α′13 + α′23

 , 2µ23, 2µ13, 2µ12}, (88)

with seven independent elastic constants: again, one more than for the case of strict579

incompressibility. Similarly to what has been done for the case of transverse isotropy,580

considering the orthotropic representation of K] (Equations (36)), the elasticity tensor can581

be written582

{L̃quasi} = 3κ {K̃}+ {L̃′strict}, (89)

where {L̃′strict} has the same form as {L̃strict} of Equation (84), except for the parameters583

αpq being replaced by α′pq.584
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5 Positive Definiteness and Invertibility585

As already remarked at the end of Section 3.2, by comparing Equations (62) and (67),586

we deduce that the strictly incompressible and the quasi-incompressible cases differ from587

each other because of the presence of the bulk modulus κ as an additional parameter in588

the latter case. Here we would like to show that, for this reason, the linear elasticity589

tensor is positive semi-definite for the case of strict incompressibility and positive defi-590

nite for the case of quasi-incompressibility. For the case of quasi-incompressibility, the591

positive definiteness of the elasticity tensor implies its invertibility. For the case of strict592

incompressibility, the positive semi-definiteness of the elasticity tensor, implying its non-593

invertibility, mathematically translates the physical impossibility to have an infinite bulk594

modulus. This can be shown by looking at the examples of isotropy, transverse isotropy,595

and orthotropy reported in Section 4.596

For the isotropic quasi-incompressible case (but this is identical for the general com-597

pressible case), the inverse of the elasticity tensor Lquasi = 3κK] + 2µM] is given by598

L−1quasi = (3κ)−1K[+(2µ)−1M[, as is immediately verifiable by evaluating Lquasi : L−1quasi = I in599

components, or by accounting for the orthogonality and idempotence of K and M [19, 18, 16].600

Moreover, Lquasi is positive definite if, and only if, both κ and µ are positive. For the601

isotropic strictly incompressible case, it is evident that Lstrict = 2µM] is not invertible, and602

therefore it is only positive semi-definite, provided that µ is positive.603

Exploiting Walpole’s formalism [18], the transversely isotropic and orthotropic cases are604

treated in a similar way. In Walpole’s representation of the elasticity tensors for transverse605

isotropy (Equations (75) and (79)) and orthotropy (Equations (84) and (88)), the individual606

scalars (shear moduli) must be positive and the matrix must be positive definite to ensure607

positive definiteness of the tensor. The positive definiteness of the matrix parts can be608

checked by evaluating their eigenvalues.609

For transverse isotropy, the eigenvalues of the 2× 2 matrix are610

0, 3α, (90)

for strict incompressibility (positive semi-definiteness attained for α > 0, i.e., l < 0), and611

3κ, 3α′ = 3(κ− l), (91)

for quasi-incompressibility (positive definiteness attained for κ > 0 and κ > l).612

For orthotropy, the eigenvalues of the 3× 3 matrix are613

0, (α23 + α13 + α12)±
√

(α23 + α13 + α12)2 − 3(α23α13 + α13α12 + α12α23) , (92)

for strict incompressibility (positive semi-definiteness attained for (α23 + α13 + α12) > 0,614

i.e., (L2233 + L1133 + L1122) < 0, as the symmetry of the matrix ensures that the eigenvalues615

are all real, and the term under square root is positive and smaller than (α23 +α13 +α12),616

in absolute value), and617

3κ, (α′23 + α′13 + α′12)±
√

(α′23 + α′13 + α′12)
2 − 3(α′23α

′
13 + α′13α

′
12 + α′12α

′
23) , (93)

for quasi-incompressibility (positive definiteness attained for κ > 0 and (α′23+α′13+α′12) >618

0, i.e., κ > 1
3(L2233 + L1133 + L1122)).619

We conclude noting that, regardless of the material symmetry, if the term 3κK], with620

κ > 0, is added to Lstrict (which is equivalent to referring to the corresponding quasi-621

incompressible material), the resulting fourth-order tensor can be inverted. Then, the622

strictly incompressible case is retrieved by performing the limit for κ→∞.623

20



6 Discussion624

In order to retrieve the correct expression of the linear elasticity tensor for incompress-625

ible materials, we followed the path dictated by the non-linear Theory of Elasticity, and626

modelled incompressibility in two ways. In the strict incompressibility approach, one im-627

poses the kinematical constraint of isochoric motion, and treats the hydrostatic pressure628

as the associated Lagrange multiplier. In the quasi-incompressibility approach, one uses629

the bulk modulus as a penalty number to keep volumetric deformations very small. We de-630

rived the algebraic conditions for a fourth-order tensor to represent the elasticity tensor of631

strictly incompressible and quasi-incompressible materials, regardless of the material sym-632

metry. This constitutes a rigorous framework for the determination of the correct form633

of the linear elasticity tensor of incompressible materials, which can be used to enforce634

the physical requirement of compatibility of a non-linear elastic material with its linear635

counterpart [7, 17, 16].636

By using the elegant formalism introduced by Walpole [18], we studied the cases of637

isotropy, transverse isotropy and orthotropy. We proved that the linear elasticity tensor638

for the case of isotropy, transverse isotropy and orthotropy is characterised by 1, 3, 6 in-639

dependent material parameters, respectively, in the strictly incompressible case (i.e. when640

the kinematically admissible deformations are isochoric), and by 2, 4, 7 independent ma-641

terial parameters, respectively, in the quasi-incompressible case (i.e. when the volumetric-642

deviatoric decoupling of the strain energy function is considered), from the original 2, 5,643

9 parameters, respectively, of compressible linear elasticity. Walpole’s formalism makes644

the study of the positive definiteness of the elasticity tensor extremely simple: a tensor645

is positive definite if its Walpole’s representation is such that the matrix part is positive646

definite, and all the scalars are positive (note that if the tensor is positive definite then it647

is invertible, and that positive semi-definiteness is treated analogously).648

An immediate application of the results presented here is for all those elastic potentials649

defined in terms of the linear elasticity tensor. This is the case of Fung-type potentials650

[32, 33, 34], which are monotonic functions of a quadratic form in the Green-Lagrange651

strain E, i.e., take the form Ŵ (E) = aϕ(12 E : Q : E), where a is a material constant, Q652

is a symmetric, positive definite (or positive semi-definite) fourth-order tensor in [TBR]40,653

and ϕ is a convex, monotonic function (Fung’s original potential is exponential, with654

ϕ = exp−id, where id is the identity in R). It has been shown [35] that, in order to ensure655

convexity of the potential, the fourth-order tensor Q of the quadratic form must be related656

to the material linear elasticity L by Q = a−1 L. Therefore, for a strictly incompressible657

or quasi-incompressible Fung-type potential, since the spatial linear elasticity tensor L658

must obey the algebraic conditions (63) or (68), respectively, so must the material linear659

elasticity tensor L (see Equation (45)), and therefore so must the tensor Q of the quadratic660

form (with the appropriate spherical and deviatoric operators: in this case the material661

operators K and M, which are analogical to the spatial K and M, and whose expression is662

reported in [16]). An application of incompressible Fung-type potentials can be found in663

the work by Bellini et al. [36].664

We note that results equivalent to those presented here have been found, for the case665

of transverse isotropy, by deBotton and Ponte-Castañeda [37] based on the earlier - but666

equivalent - version of Walpole’s formalism [19]. Based on the spectral decomposition of the667

compliance tensor, Itskov and Aksel [38] introduced a procedure to study the admissible668

values of the elastic constants for the cases of strict and quasi-incompressibility, and found669

a closed expression of the elasticity tensor without explicit use of the eigenvalue problem670

solution. Moreover, our results for the case of quasi-incompressibility coincide with those671

recently reported by Vergori et al. [30], who also proved that, for the case of monoclinic672
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symmetry, the number of independent parameters reduce from 13 to 10. A natural exten-673

sion of our work could be to include the monoclinic symmetry to retrieve the results by674

Vergori et al. [30] in the quasi-incompressible case, and to study the strictly incompressible675

case. Finally, it is an open problem to understand how the results presented in this work676

should be generalised to the case of second-gradient continua [39, 40], particularly when677

used to describe fibre-reinforced composites or porous media [41, 42, 43, 44] saturated with678

incompressible fluids, or in the case of N -th grade continua [45], or in the case of beams,679

plates and shells [46, 47].680
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