Linear systems with unknown finite-valued inputs are of interest in all those hybrid frameworks where switches or jumps may change the continuous dynamics of a linear system. Many models have been proposed in this sense; in most cases, a probabilistic distribution on the input is assumed to be known and used as prior information for estimation. In this paper, we propose a simple model of jump linear system and develop low complexity algorithms, based on BCJR, to retrieve the input. We consider systems over a possibly infinite time horizon, which motivates the study of on-line, causal algorithms. Our main purpose is to provide a rigorous theoretical analysis of the performance of the proposed techniques: an error function is defined and its distribution is proved to converge, exploiting mathematical tools from Markov Processes theory and ergodic theorems.

Analysis of reduced-search BCJR algorithms for input estimation in a jump linear system / Fagnani, Fabio; Fosson, Sophie. - In: SIGNAL PROCESSING. - ISSN 0165-1684. - ELETTRONICO. - 108:(2015), pp. 341-350. [10.1016/j.sigpro.2014.09.027]

Analysis of reduced-search BCJR algorithms for input estimation in a jump linear system

FAGNANI, FABIO;FOSSON, SOPHIE
2015

Abstract

Linear systems with unknown finite-valued inputs are of interest in all those hybrid frameworks where switches or jumps may change the continuous dynamics of a linear system. Many models have been proposed in this sense; in most cases, a probabilistic distribution on the input is assumed to be known and used as prior information for estimation. In this paper, we propose a simple model of jump linear system and develop low complexity algorithms, based on BCJR, to retrieve the input. We consider systems over a possibly infinite time horizon, which motivates the study of on-line, causal algorithms. Our main purpose is to provide a rigorous theoretical analysis of the performance of the proposed techniques: an error function is defined and its distribution is proved to converge, exploiting mathematical tools from Markov Processes theory and ergodic theorems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2587365
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo