We address the geometric Cauchy problem for surfaces associated to the membrane shape equation describing equilibrium configurations of vesicles formed by lipid bilayers. This is the Euler–Lagrange equation of the Canham–Helfrich–Evans elastic curvature energy subject to constraints on the enclosed volume and the surface area. Our approach uses the method of moving frames and techniques from the theory of exterior differential systems.

The geometric Cauchy problem for the membrane shape equation / G., Jensen; Musso, Emilio; L., Nicolodi. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8121. - ELETTRONICO. - 47:49(2014), pp. 495201-495222. [10.1088/1751-8113/47/49/495201]

The geometric Cauchy problem for the membrane shape equation

MUSSO, EMILIO;
2014

Abstract

We address the geometric Cauchy problem for surfaces associated to the membrane shape equation describing equilibrium configurations of vesicles formed by lipid bilayers. This is the Euler–Lagrange equation of the Canham–Helfrich–Evans elastic curvature energy subject to constraints on the enclosed volume and the surface area. Our approach uses the method of moving frames and techniques from the theory of exterior differential systems.
File in questo prodotto:
File Dimensione Formato  
1406.5981v2 Helfrich.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 332.95 kB
Formato Adobe PDF
332.95 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2584411
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo