This paper describes the development and characterization of a thin film thermocouple array to be used as a non-invasive solution to map the temperature distribution inside small vials used for freeze-drying pharmaceutical chemicals. Pharmaceutical chemicals are often produced by means of freeze-dryers with very good results, even though the slowness of drying process may increase the product cost. Increasing the shelf temperature accelerates the drying process, but can increase the risk of melting and damaging the product. This risk could be minimized by following the product temperature evolution during the drying step, by means of a noninvasive measuring system able to perform an in situ continuous monitoring. Actual sensors are too invasive to permit a reliable measurement and in addition their dimension does not allow to employ many sensors in a small volume. This paper describes the development of a new multi-sensor structure based on an array of thermocouples having nanometric thickness. The thermocouple array can be embedded into the glass wall of a test vial having all the other characteristics equal to the remaining batch thus providing meaningful and reliable results. Prototypes of the proposed thermocouple array have already been realized and tested making it possible to map the temperature at intervals of few millimeters, following the ice edge during lyophilization.

Sputtered thermocouple array for vial temperature mapping / Parvis, Marco; Grassini, Sabrina; Fulginiti, Daniele; Pisano, Roberto; Barresi, Antonello. - STAMPA. - (2014), pp. 1465-1470. (Intervento presentato al convegno 2014 IEEE International Instrumentation and Measurement Technology Conference: Instrumentation and Measurement for Sustainable Development, I2MTC 2014 tenutosi a Montevideo, Uruguay nel 12-15 May 2014) [10.1109/I2MTC.2014.6860988].

Sputtered thermocouple array for vial temperature mapping

PARVIS, Marco;GRASSINI, Sabrina;FULGINITI, DANIELE;PISANO, ROBERTO;BARRESI, Antonello
2014

Abstract

This paper describes the development and characterization of a thin film thermocouple array to be used as a non-invasive solution to map the temperature distribution inside small vials used for freeze-drying pharmaceutical chemicals. Pharmaceutical chemicals are often produced by means of freeze-dryers with very good results, even though the slowness of drying process may increase the product cost. Increasing the shelf temperature accelerates the drying process, but can increase the risk of melting and damaging the product. This risk could be minimized by following the product temperature evolution during the drying step, by means of a noninvasive measuring system able to perform an in situ continuous monitoring. Actual sensors are too invasive to permit a reliable measurement and in addition their dimension does not allow to employ many sensors in a small volume. This paper describes the development of a new multi-sensor structure based on an array of thermocouples having nanometric thickness. The thermocouple array can be embedded into the glass wall of a test vial having all the other characteristics equal to the remaining batch thus providing meaningful and reliable results. Prototypes of the proposed thermocouple array have already been realized and tested making it possible to map the temperature at intervals of few millimeters, following the ice edge during lyophilization.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2578938
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo